Spatial Influence vs. Community Influence:
Modeling the Global Spread of Social Media

Krishna Y. Kamath, James Caverlee, Zhiyuan Ch
Department of Computer Science and Engineer
Texas A&M University
College Station, TX 77843
{kykamath, caverlee, zcheng}@cse.tamu.edu

ABSTRACT

In this paper we seek to understand and model the global dprea
of social media. How does social media spread from location t
location across the globe? Can we model this spread and pre-
dict where social media will be popular in the future? Toward
answering these questions, we develop a probabilistic hibde
synthesizes two conflicting hypotheses about the naturenlofeo
information spread: (i) the spatial influence model, whisheats
that social media spreads to locations that are close by(ianie
community affinity influence model, which asserts that datie-

dia spreads between locations that are culturally condeeteen

if they are distant. Based on the geospatial footprint of #&5

lion geo-tagged hashtags spread through Twitter, we eiathase
models at predicting locations that will adopt hashtagshi fu-
ture. We find that distance is the single most important exilan

of future hashtag adoption since hashtags are fundameitdedl.

We also find that community affinities (like culture, langaagnd
common interests) enhance the quality of purely spatial etsod
indicating the necessity of incorporating non-spatiatdess into
models of global social media spread.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—information networks

General Terms
Algorithms, Experimentation

Keywords

social media, information diffusion models, virtual commities

1. INTRODUCTION

Users generate and consume a great deal of content on the In-

ternet every day in the form of videos, blogs, tweets, andrso o
YouTube, for example, streams more than 4 billion videosyeve
day, with 60 hours of new content uploaded every minute [A%].
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users consume and share this content, some of it tends térgain
tion and become popular resulting in viral videos, trendiagh-

tags, popular blogs, and so forth. These phenomena hasetatir
a considerable amount of recent research to study the dgaarhi
the adoption of social media [3, 12, 16, 18, 22].

Of particular importance is the geospatial spread of socélia.

For example, how did videos captured on smartphones dunimg t
Arab Spring spread across the globe? Are there key locatiats
promoted the spread of these videos? As the Arab Spring has be
come increasingly part of the US’s social conscious, do eekeg
US locations impacting the propagation of videos today?warns
ing these questions is extremely challenging, and so asiarbieg
step we study in this paper the dynamics of social media amopt
across geographical locations. Concretely, we formalieeprob-
lem of predicting the global spread of social media asdleation
subset selection problenThat is, as a particular item (e.qg., video,
image) begins to propagate can we predict the locationsenher
will soon become popular? For example, observing a videahvhi
is gaining traction in Qatar, can we predict locations in dper
where the video is soon going to become popular?

Previous work in the area of information (content) diffusemd
influence propagation have tended to focus on the pathways of
diffusion through social and information networks, e.d.1,[13,

14, 15, 17, 26]. Complementary to these efforts, we focushen t
geospatial connections that impact the spread of socialanadd

so we abstract from the interaction network layer to condide-
grained locations and their connections to other locatidowards
modeling the global spread of social media, we develop a-prob
abilistic model that synthesizes two conflicting hypotlseabout
the nature of online information spread:

e Distance matters As encapsulated by Tobler’s first law of ge-
ography [24] which asserts that all things being equal,erlos
places are more alike, whereas distance places are more un-
alike. In the context of social media spread, Tobler’s fiast |
of geography would suggest that locations that are closedio e
other should be more likely to adopt similar online behawior
(e.g., viewing a YouTube video, posting the same hashtag).

“Distance is dead” [5]. The second hypothesis claims that
since online interactions are freed from geospatial cairgs,
mere proximity is no guarantee toward adopting similarrali
behavior. In this setting, long-distance links formed tigio
common online community may be more predictive. For ex-
ample, tech communities in Austin, San Francisco, and IBeatt
may be tightly linked through their common interest in samil
YouTube videos, whereas more geographically close lagsitio
may share little in common.

Based on the first hypothesis, we develop spatial influence
mode] which asserts that the adoption of a particular user agfivi
a nearby location has a stronger influence on a target locttan



whether that same activity was adopted at a more distartidoca
In other words, distance matters. Based on the second tegisth
we develop theommunity affinity influence modevhich asserts
that locations that share a similar community affinity, reliess of
distance from each other, are more likely to influence on¢hemo
While there are many ways to measure community affinity, we pr
pose two methods: (i) the first considers communities to bsecl
to each other if they share similar activities regardlessiuénthey
adopt these activities, for example tech communities intidusnd
San Francisco reading similar articles on thehackernews.and
(i) the second considers communities close to each othieif
tend to adopt similar activities in sync, like a video becognpop-
ular in New York and Boston around the same time. Note thdt bot
the spatial influence model and the community affinity infleen
model are developed completely orthogonal to the undeglgo
cial network and are based solely on the geospatial disimiwf
user activities, meaning that estimating flows of influemoeffone
person to another are not necessary. We test these modéis in t
context of the geospatial footprint of 755 million geo-tadcash-
tags spread through Twitter. We find that while the spatfii@nce
model has a higher impact than the community affinity infleenc
model in predicting the spread, its combination with comityun
affinity influence model gives the best performance, sugug#tat
both distance and community are key contributors to socadia
spread.

The rest of the paper is organized as follows. We start by de-
scribing related works in Section 2. In Section 3, we descabr
dataset and measure geo-spatial properties of social pexhaga-
tion. In Section 4, we formally define the location subset¢stbn
problem and present the spatial influence and communityitgffin
models. Finally, in Section 5, we define the metrics to compar
these models and evaluate the performance of these modets be
concluding in Section 6.

2. RELATED WORK

Our work presented here builds on two lines of research:téwit
information diffusion and geo-spatial analysis of socigidia.

Information Diffusion on Twitter : There have been several pa-
pers studying the general properties of Twitter as a soeaork
and in analyzing information diffusion over this network2[116,
17, 26]. Continuing in this direction most papers relatethiash-
tags have focused their attention on understanding theagedjon
of hashtags on the network. For example, in [22] the authoid s
ied factors for hashtag diffusion and found that repeatgubsxre
to a hashtag increased the chance of it being reposted aggin,
pecially if the hashtag is contentious. An approach grodride
linguistic principles has been to study the property of tegltre-
ation, use, and dissemination in [7]. In related reseaqmbraaches
based on linear regression have been used to predict théapopu
of hashtags in a given time frame in [25]. Because of the séman
nature of hashtags and the variety of ways in which itis usedn-
vey information about a tweet, there have been some papéch wh
have used hashtags to solve problems like sentiment daigéfj,
topic tracking on twitter streams [19], and so forth.

Geo-spatial Analysis of Social MediaThe emergence of location-
based social networks like Foursquare, Gowalla, and Gdaie
tude has motivated large-scale geo-spatial analysis [3,Sbme

of the earliest research related to geo-spatial analysigebfcon-
tent were based on mining geography specific content fockear
engines [10]. More recently in [1] the authors analyzed cear
queries to understand the spatial distribution of quenesumder-
stand their geographical centers. On Twitter, geo-spatialysis
has focused on inferring geographic information from twdide
predicting user locations from tweets [6] and spatial miodeto

geolocate objects [8]. Similar analysis to infer user'sakian on
Facebook based on their social network has been studiedl iA[2
recent paper dealt with the spatial analysis of Youtubeosdé] .
In this work the authors were able to observe the highly loeslre
of videos based on the propagation patterns of Youtube sideo

3. MEASURING THE GEOSPATIAL PROP-
ERTIES OF SOCIAL MEDIA

In this section we first present notation for measuring $oce

dia spread with an eye toward developing models of this sbrea
Then we highlight the experimental setting — Twitter-babadh-
tags — and examine the geospatial properties of hashtagdspeir
goal is to study questions like: Does distance impact whetbe
cial media (hashtags, in this case) is shared between tatidos?
Does distance impact the timing of hashtag adoption? How pre
dictable is the spread of a hashtag over a geographic areaarlyo
observations indicate whether a hashtag will spread cotfypaic

be widely diffused over a large spatial area?

3.1 Preliminaries

Let M be the set of user activities of interest — for example, an
activity could correspond to a click on a web link, a view of alw/
video, sharing of a link on Facebook, posting a particulahkteg
on Twitter, and so on. Suppose we have divided the globe into a
set of distinct locationd. (say by overlaying a mesh dividing the
globe into squares of 0.001 degrees latitude by 0.001 dégmge
tude). Every activity is associated with some subset oftiona in
which the activity has been observed. For example, baseluediPt
address, a view of a Web video can be traced back to an approxi-
mate latitude and longitude. Similarly, many social medievices
and smartphones support GPS-enabled tagging of usertiastivi
By discretizing time into regular intervals (say, into 5@ed incre-
ments), we can express the set of occurrences of an aetivityM
in a particular locatiort € L at timet aso;" (t). For exampleo;™
may represent 10 clicks of a Web videoin the past minute, where
each click originates in a particular neighborhdod

Now, suppose we have observed all occurrences of an activity
up to some critical time. Then we can define the setatfserved
occurrences(O;™) of m at a single locatiot as:

ts
o=

t=0

and thetotal observed occurrencesetO™ across all locations in
L as:

@)

o"=Jor
leL
We denote the set of unique hashtags observéa#i/;.

3.2 Experimental Setting: Hashtags

To measure the geospatial properties of social media, wesfoc
our attention on one type of globally observed user activithe
posting of hashtags on Twitter. Twitter hashtags are préfixith
a# and mostly serve as tags to the corresponding tweet. Ugprs ta
their tweets for different purposes. For example, some eeate
driven like #ripstevejobs, and #fukushima, while some aostig
for fun like #bestsportsrivalry and #ifyouknowmeyouknow.

We collected a sample of arour@55 million geo-tagged tweets
containing~10 million unique hashtags from Twitter using the Twit-
ter Streaming API from February 1 to November 30, 2011. Each
tweet in this sample is tagged with a latitude and longitude i
dicating the location of the user at the time of the postingl A

< hashtag, time, latitude, longitude > tuples correspond-
ing to a particular hashtag are considered as a single tyct¥i
interest. Together all hashtags give us the set of all diethA/ .
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Figure 1. Geospatial properties of hashtags. (a) shows catation between location similarity and distance. We see #t similarity

between location decreases with increasing distance. ()@vn correlation between hashtag adoption lag and distancéNe see that
adoption lag increases with increasing distance. (c) compiaon between early and late coverage for call hashtags. A peer law
indicates that most hashtags have a small difference betweearly and late coverage values.

We round latitudes and longitudes to their nearest tenthegl
which overlays a mesh dividing the globe into locatioi3. ( To
avoid sparsely represented hashtags, we consider onlalgashith
at least 5 occurrences in a location and consider only hgshiih
at least 250 total occurrences across all locations. Soroe $iash-
tags may have begun their Twitter life before the first day wf o
sample (February 1) while others may have continued on ifeer
last day (November 30), we consider both February and Nogemb
as buffer months. Hence, we capture the full lifecycle othitags
starting on or after March 1 and ending by October 31, which fo
cuses our study to hashtags which have both their birth aathde
within the time of study (and as a result, removes cyclicahitags
like “#ff” and “#nofollow”). We additionally divide the seof all
hashtags into two sets: a training set based on hashtag$/fesaf
to August; and a test set based on September to October.ddasht
that start in training but continue into test are ignoredthis way,
the training set contains 1466 complete hashtag propagatiod
the test set contains 515.

3.3 Geospatial Properties of Hashtags

Toward informing the development of models of social media
spread, we study three geospatial properties of hashtggshaf-
ing versus distance, (i) adoption lag versus distance,(gihdhe
predictability of spread.

Hashtag Sharing versus DistanceWe first seek to understand the
relationship of the distance between locations on the conafitg
of hashtags adopted in locations. Do we find that distancenbas
impact on whether a hashtag is shared between two locaties?
define the distance between two locations using the Haediin
tance, which is commonly used to measure the distance betwee
locations based on the spherical shape of the Earth (as cethfza
Euclidian distancé) In essence, the Haversine maps from latitude-
longitude pairs to distanc@ : R*xR? — R. H : Lx L — Rx.
Given two locations, we measure their hashtag “similanitsthg
the Jaccard coefficient between the sets of hashtags obsatve
each location:

_ Mll N M12

Mll U Mlg
where recallM; is the the set of unique hashtags observed iro-
cations that have all hashtags in common have a similariyesof

1.0, while those that share no hashtags have a scdi@®of he re-
lationship between hashtag similarity and distance id¢didn Fig-

Simhashtag (ll 3 l2)

1For a fuller treatment, we refer the interested reader

http://en.wikipedia.org/wiki/Haversine_formula

to

ure 1(a). We see a strong correlatign=£ —0.8), suggesting that
the more distant two locations are, the less alike they amalb
note that, though the similarities are high for most locatiairs
that are close to each other, there are some location p&ios€a
the blue line) where this doesn't hold true. Presumablysdhmut-
liers are linked by some other factors (language, cultuvhjch we
shall explore in the community affinity model shortly.

Hashtag Adoption Lag versus Distance: We additionally can
measure the lag between two locations by measuring how tlose
time did the two locations adopt the same hashtag. Locatlwats
adopt a common hashtag at the same time are more similar (and
have a smaller lag) than are two locations that are farthert &p

time (with a greater lag). Letting/; be the set of unique hashtags
observed in andt" be the time of first occurrence of atl, we

can define the hashtag adoption lag of two locations as:

: )
"M, N M
| M, Lo me My, NMy,

lagadoption(lh l2) |t;? — t{;'

where the adoption lag measures the mean temporal lag bretwee
two locations for hashtags that occur in both the locatiédnewer
value for this measure indicates that common hashtags appea
reach both the locations around same time. We see in Figbje 1(
a positive correlationd = 0.86), suggesting that locations that are
close in spatial distance tend also to be close in tempostdntie
(e.g., they adopt hashtags at approximately the same tinoep-
tions that are more spatially distant tend to adopt hastaagsich
greater lags with respect to each other. As in the case otdwmsh
sharing, we see many location pairs having low lags despitegb
quite distant from each other, suggesting some other mexhas

at work.

Predictability of Spread: Finally, we measure the predictability

of the “spread” of hashtag over a geographic area througtoits
erage Coverage measures the mean Haversine distance for all oc-
currences of a hashtag from its geographic midpoint:

com) = -

= om > D(o,G(O™))

ocO™

where we define the geographic midpdifur a set of occurrences
as a functionG : O — RQZO, where the first dimension is the

2http://www.geomidpoint.com/
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Figure 2: #cnndebate after 5 minutes (left) and 2 hours (righ)
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Figure 3: #ripstevejobs after 5 minutes (left) and 2 hours (ight)

latitude and the second is the longitude of the midpoint. Gdieu-
lation of geographic midpoint is similar to calculating tinépoint
on a plane for a set of 2-dimensional points, but as in the ohse
Haversine distance, the geographic midpoint is calculbjedon-
sidering the effects of Earth’s spherical shape. A haslueagjized
to a specific areas has a small coverage, while a univershatdups
has a larger coverage. To illustrate, consider the two hgshtcn-
ndebate and #ripstevejobs. Figure 2(b) shows the propagefi
#cnndebate — corresponding to the Republican Presidelatiste
— after 2 hours. We see that the hashtag is mostly local to tited)
States and has a coverage of 743.32 miles. In contrast,eFagby
shows the propagation of #ripstevejobs after 2 hours, tinglih a
coverage of 3120.96 miles, indicating a global footprint.

To understand the predictability of spread, we measureitie d
tribution of differences between the coverage for hashedfter
they have completely propagated and coverage after thedgash
has propagated for a smaller time interval. For three irpesiods
—of 5 minutes, 15 minutes, and 30 minutes — we plot the diffeze
between the coverage at this early time of a hashtag’s patioeg
and the coverage after the completion of the hashtag’sedifes-

tend to share common hashtags and adopt them around the
same time, compared with locations that are distant.

2. Many distant location pairs, though, exhibit similartpats
of “closeness” in that they share hashtags and have a low
hashtag adoption lag, suggesting some additional factor is
“bending space” to link the two locations.

3. Finally, the spread predictability analysis suggesas ¢arly
occurrences of a hashtag are good indicators of the relative
coverage of a hashtag’s future spread (either compact alyvid
diffuse).

4. MODELING HASHTAG SPREAD

Based on these observations, we next turn to the challenge of
developing models of hashtag spread. Specifically we dpaatd
evaluate thespatial influence modet in which nearby locations
strongly influence hashtag adoption — and twenmunity influ-
ence modet in which “similar”, though perhaps distant, locations
strongly influence hashtag adoption. The intuition behiathlap-

pan. We observe in Figure 1(c) that most hashtags have a smallproaches is that locations influence each other, and thdtithee

coverage difference, indicating that the final coverage ashtag
propagations can be accurately estimated early in itsjifec And
the predictability of coverage increases as the length efritial
period increases (from 5 to 30 minutes); that is, as moreceniel is
accumulated over the beginning stages of a hashtag, thectinal
erage differs by less.

Continuing the example of #cnndebate and #ripstevejobseee
in Figure 2 and Figure 3 that occurrences observed early ash-h
tag’s lifecycle (in this case, after just 5 minutes) are gimalicators
of later occurrences (in this case, measured after 120 sshut

Based on these three geospatial properties, we observe:

1. In most cases, pairs of locations that are close to eadr oth

spread of a hashtag is guided by this mutual influence.

4.1 Problem Setting

To formalize the development of such hashtag spread modéls a
to provide an experimental grounding for evaluating thdiguaf
such models, we focus on the problem of selecting futuretimes:
that will adopt a hashtag based on the partial evidence didkh-
tag’s propagation up until that time. We call this tbeation sub-
set selection problemThat is, as a particular social media begins
to propagate can we predict the locations where it will saoive
and become popular? For example, observing a video which is
gaining traction in Qatar, can we predict locations in Eerafnere
the video is soon going to become popular? The models dexelop
for tackling this problem are an important and necessany f&te
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ity m at timet; is the problem of predicting top-locations which

Figure 4: Based on the observed postings of a hashtag up to will have the highest number of unobserved occurrencesifor

some timet, (the vertical dotted line), can we predict which M(m,L) = S" = argmax UL
locations will post the most hashtags in the future? * (sCL||S|=k}
where, M : M x L'*! — L*, defined as subset selection model,
supporting content localization, geo-advertising, fraledection, takes a user activity and the set of all locations as input @tidrns
and other social media analytics. It is particularly impattthat a subset of locations of cardinalify.
such models robustly predict the spread of social mediaewhis
still developing (e.g., a video is going viral, a meme is ety The challenge for identifying the best choice of locatigiig at
increasingly popular). time ¢, is difficult because the future occurrences set for all lo-
Recall thetotal observed occurrencesetO™ across all loca-  cations, U™, is available only after the complete evolution of the
tions in L (O™ = U, O/") introduced in Section 3.1. In prac-  activity of interest. Hence, we must predict which locasiame the
tice, these observed activities will vary by location. Fatlopting best. Of course, determining the best choice of locatiossrigler
locations may encompass many postings of a hashtag (or @ews  the longer the decision point is delayed (since many buysiind
a Web video, ...), while later adopting locations will haesvfor trending phenomenon will have run their course, saturatintp-
no postings of a hashtag (or views of a video, ...), espgdialihe cations), but of less value. The question is whether the sesbf
early moments of a hashtag's rise to popularity. Based arsthite  |ocationsS;” can be identified for some timg close to the activ-
up to some time,, can we select some subset of locatiGhs L ity’s first observed occurrence.
such that these locations are likely to observe many occoeseof
the user activity. 4.2 Modeling Spread: Spatial Influence vs. Com-
For example, consider the three locations — New York, Dallas munity Influence

and Seattle — shown in Figure 4 and suppose a particulardgasht
has been posted from each location. Based on the observied has
tag postings up to some tinme (the vertical dotted line), can we
predict which locations will post the most hashtags in therke?
Toward this goal, we can express the occurrences of theitgctiv
after the critical timets as the unknown future set ahobserved

With the problem statement in mind as well as our observation
of the geospatial spread of hashtags, we now propose ladafla-
ence based models for geo-spatial spread. The intuitiomtetur
approach is that locations influence each other. And giveash-h
tag distribution, the future propagation of this hashtaguigled by
this mutual influence between locations. The influence exdny

oceurrences a location on another could be based either on proximity eetw
locations or on the culture, language, and common intesbsted
m < by these locations. We measure this influence using an irdéuen
vt = U 0" () © metric Z: 75 which has a range db, 1] and represents the in-
t=tatl fluence locatiorl; has onl; such that the higher the value of this
where U™ is the set of occurrences af, observed in locatior metric, then the greater is the influence exerted;lmn ;.
after timet,. We can additionally express thetal unobserved So given a hashtag, the spread model for an influence metric
occurrencessetU™ across all locations ifi as: 7'~ s defined as:
U™ = U Ulm
leL Mspreadm, L) =  arg max Z "+ Z P ST
Together, the total occurrences of an activity throughtsulifie- BELIsI=k tes hieL-t
time is O™ U U™. Now, suppose for some subset of locations L lor B ) o
S C L, we measure the count of the total unobserved occurrencesWhere,P;™ = 17 is the probability of observing user activity
of an activity in this subset d3g": in [, estimated based am’s propagation untit, and the expres-
sion within the parenthesis calculates the total effedtifleience
Ug => 0" exerted at this location to generate This concept is shown in
les Figure 5, where the locatioh gets influenced by all the locations
We can then formulate the task of selecting the lescations at and the effective influence on it is calculated as shown abbhe
some critical time; as thelocation subset selection problem spread model relies on the third observation that earlymenoes
of a hashtag are good predictors of future coverage. Hendhis
DEFINITION 4.1. (Location Subset Selection Problemiven expression we use the probability of observingn I to modify I's

an integerk, the location subset selection problem for a user activ- influence while calculating the effective influence. In thigy the



spread modelMspread Selects a subset of the most influenced lo-
cations with the belief that this influence will make thesealions
adopt hashtags in future.

Using the spread model as framework, we now describe two gen-
eral approaches — the spatial influence model and the corymuni
affinity model — that build on the observations made in Secsio

4.2.1 Spatial Influence Model

The spatial influence model is based on our first observation i
Section 3.3 that tells us that distance between locatidhseimces

what hashtags are shared and when they are shared. So, we defin

. . L=l
the spatial influence metritg),, s, as:
Iljali . a~ ")
Spatial — — ]
p ZliELa H(l;,l)

where, the numerator exponentially decédys influence orl as a
function of their Haversine distance and the denominatomaé
izes this influence so that,, Zi ot = 1.0. The parametex
controls the rate of influence decay. A higher valuedatecreases
influence from a point at a higher rate and a lower value fonalp

A value for Z¥_"' is in the rangg0, 1], with 0 indicatingl;
doesn’t transmit anything th and1.0 indicatingl; is the only

location influencing; and it gets all of its hashtags after
Sharing Influence Similar to transmitting influence, we use
content-related proximity to model the impact a location ca
have on nearby locations, using the sharing score:
|Mli N Mlj'

|Ml1',|
This function measures the probability thavbserves the same
hashtags ak. Using this we define the sharing influence as:

Sljali =

Tl 81—,
Share — S
ZleL I—=1;
 dy

A value forIéha,e' is in the rang€0, 1], with 0 indicatingl;
doesn't share anything with and1.0 indicatingl; is the only
location the influencind; and all hashtags that have occurred
in I; have occurred it;.

As in the case of the spatial influence model, we can use these

©)

(> 1.0) decreases influence at a lower rate. Using the this influence two community affinity influence metrics to generate a model a

metric we define the spatial influence model as:

1; —1
Islpatial

Mespaia(m, L) =  arg max Z P"+ Z P

{SCL|1SI=k} 5 lieL—1
(3)

Toillustrate, consider an example of a hashtag that oceuysio
Houston. Now given an option between Austin and San Frangcisc
the model as defined in (3) picks Austin since it is much closer
Houston than San Francisco.

A real world example of modeling propagations using theiapat
influence model for the hashtag #ripstevejobs is shown iorEig.
We predicted the future distribution of this hashtag usireggpatial
influence model based solely on its initial (first 5 minutesjribu-
tion. The comparison between the predicted and actuaikulisitn
is shown in Figure 6(a) and Figure 6(b) respectively. We nlese
that the relative distribution (indicated by color) andvigdues (in-
dicated by scale) are very close to each other.

4.2.2 Community Affinity Influence Model

Of course, distance is not the only factor that impacts theasp
of a hashtag, as we observed in Section 3.3 (second observati
Hence, we now propose the community affinity influence models
for capturing non-distance links between locations likéura, lan-
guage, and common community interest. Concretely, we difine
influence metrics to model community affinity based on theime
mon usage of hashtags.

e Transmitting Influence: Using temporal proximity, we ob-
serve that if a hashtag is observed at a particular locattiem,
it will soon be observed in other related locations as wetl. T
model the degree to which a location can impact other logatio
temporally, we define the transmitting scave,as:

Hm [t} >t} Ym € My, N M, }|
|Mli|

77j —l; =

S
where, the numerator is the number of hashtags that occurred

in 1 beforel>. So, when all hashtags occurringlinhave oc-
curred inlz and all before occurring iy, the transmitting score
for I, transmitting a hashtag fe - P;(l2|l1) = 1.0. Using this
we define the transmitting influence as:

_ Inj%li
ZlEL 77*}1,;

lj—1;
it
ITrans.

4)

1;—1
Trans.

Mirans(m, L) = argmax Z P"+ Z P[i".

{SCL | ISI=k} g l,eL—1

which models spread using transmitting influence, and,

Mshadm, L) = argmax > (P"+ > P-Ig
{SCL | IS|=k}ics l,eL—1

which models spread using sharing influence.

To give a bit more insight into these two models, we consguict
two directed graphs over the hashtag dataset — one graptafe-t
mitting and other for sharing influence — with locations asle®
and the influence scores calculated using these functioeslges
weights. In this graph, a cluster represents a collectionoafes
(locations) that are close to each other, where closenetSfireed
either temporally (via transmitting influence) or based ontent
(via sharing influence). If the functions models locatiotatien-
ships correctly, then nodes that are close to each otherrirstef
distance should be in the same cluster (observation 1) ambsn
that are culturally similar should be the same cluster (olag®n
2). The results from this experiments are shown in Figur@ 7(a
and Figure 7(b), where every cluster is represented wittfardi
ent color. In both these figures we can verify the two obsermat
Most locations which are close to each other are in the sanséet!
and some locations that are culturally similar, like theakans be-
tween English speaking parts of Western Europe and Unite St
and French speaking parts of Brazil and France, are in the sam
cluster.

4.2.3 Combining the Two Models

We can also combine the spatial and community affinity models
by first defining an effective influence score:

P+ Y P (8 Tt (1- 6)

l;€L—1

1;—1
ITransmi

(6)

where, decides the weight assigned to each model and then using
to model spread as:

core(l) T

patial

Mspatial + Transmi{ M, L) = arg max Score(l)

{SCL | |S|=k} les
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Figure 6: Example of using spatial influence model for the hdstag #ripstevejobs

(a) Transmitting Probability

(b) Sharing Probability

Figure 7: Clusters of related locations based on the transniing and sharing probability functions.

We can define a similar model using sharing influence instéad o Selection Based on Linear Regressionn this approach, we solve

transmitting influence as done above.

5. EXPERIMENTS

In this section, we compare the quality of the proposed lonat
selection approaches against three baseline approactemntrd/
duce metrics for measuring the quality of a selection apgroa
investigate the proposed approaches with respect to thesdityq
metrics and identify the best approach to solve the locatalac-
tion problem.

5.1 Baseline Approaches

In addition to the three geo-spatial approaches introdircéds
paper, we also consider three alternatives:

Random Selection In this simplest approach, we randomly select
k locations as the target subset, from the set of locationsenthe
hashtag has occurred prior to. The main drawback of this ap-
proach is that locations are selected without regard fontireber

of hashtags observed. In addition, since the target subsetdcted
based solely on a hashtag’s propagation, the locationg&detttsis
set will never be selected. Hence, if the hashtag has octimre

fewer thark locations, then the target subset contains always fewer

thank locations.

Greedy Selection A natural improvement over random selection
is a greedy approach, in which locations are selected bas#teo
notion that a hashtag is going to continue to be used in loesti
where it is currently popular. Concretely, the greedy appho
ranks locations based on the observed occurrence courg oéth-
tag: |O"|. The intuition is that a hashtag that is popular in New
York at location subset selection time is going to stay papinl the
future as well. As in the random selection approach, it issiibs
that a hashtag might not have propagated tocations, in which
case we pick all the locations resulting in a subset withicality
lesser thartk.

the location subset selection problem using a linear regresnodel.
The idea behind this approach is to learn a model that carigpred
the unobserved occurrences for a hashtag given occurretces
served until the location subset selection time. Lebe the train-
ing hashtag set described in Section 3.2. Udifigve first define
the matrixX for observed occurrences as shown below:

X,L-:( o 103 . ‘Ofu‘) Vie[l,|M
1 loll o del) vie M|
_ \O;'-\) -( X X X))
(\Oi\ |M|x1+|L| ( ! : ‘Alo

where, each row in this matrix corresponds to a hashtag itraive
ing hashtag set. Similar t&, we define the unobserved matiix
using unobserved occurrences.

T
| M
M) Vi € [1,|M])

|U; \) V7
(\Ul \AI\X\L\ ! ?

Using these matrices, we defilieas a linear function o, Y =
Xp+E,wheregisthe (L] x |L|) parameters matrix ardlis the
(IL| x | M]) matrix of error terms. Every columg, in 5 models
the relationships of a locatidrwith the rest of locations and can be
estimated by linear regression using the equafiors: X 5; + &,
where¢&; is the error column fot, in £. We for a new hashtag.
we can determine the taplocations using:

Yizy)

IL|
O’ITL
arg max Z Blo+ZBzL|Om:

(SCL| S|=k} Ic%

/V4Lm.Reg(n1,[J =

where, the expression in the parenthesis estimates peobabiir-
rence distribution in locations for.



Approach

Accuracy | Impact | Impact Diff.

Random 0.256 0.343 0.739

Greedy 0.296 0.372 0.76

Lin. Regression 0.328 0.241 0.626
Sharing Infl. 0.266 0.264 0.666
Transmitting Infl. 0.242 0.253 0.654
Spatial Infl. 0.373 0.309 0.685
Transmitting Infl. + Spatial Infl|  0.407 0.393 0.78
Sharing Infl. + Spatial Infl. 0.421 0.403 0.789

Table 1: Comparing the predictive models (s = 5 minutes, k = 3). The approach combining the community influence approach
with spatial influence approach gharing influence + spatial influenceperforms the best.

5.2 Evaluation Metrics

We denote the best possible location subset that can beestlec
atts asS;* (Si with ax on top). To evaluate the performance of
the approaches proposed in this paper, we define three metric

Accuracy: This metric measures the similarity between the ap-
proximate subset, determined using our approaches, arek#oe
location subset that is determined after the completionashtag
propagation. This measure is similar to other set companiget-
rics like the Jaccard index. It is defined as:

R alHY
k

where,k is cardinality ofS;". If the sets are identical, the accuracy
is 1.0, and0.0 if they are disjoint.

Accuracy =

Impact: While accuracy measures the similarity between the sets,
it doesn’'t measure the effect of selecting a particular subser
another. For example, it is possible that two disjoint séteca-
tions observe same number of occurrences after they argtesble
resulting in the same impact. Hence, we also consider theesub

first evaluate the performance of the approaches for a fixe@ d
location selection times and subset cardinality. We then evalu-
ate the performance of these approaches by varying the e u
to select location subsets. Similarly, we then evaluateptréor-
mance of the approaches for different sizes of locationetsbs

Experimental Setup For our experiments we use two hashtag
sets: (i) Training hashtag set, and (ii) Test hashtag set.hBlshtag
sets are extracted from Twitter hashtag propagations asided

in Section 3.2. Techniques that require prior hashtag maftiens
(linear regression, sharing and transmitting influence)ths train-
ing hashtag set to build their models. For the spatial infleen
model, we setv = 1.01.

We use the test hashtag set to evaluate the performanceag-the
proaches. Given a hashtag from the test set, to evaluatgaveah-
metric pair, we replay the hashtag’s propagation. At lacatub-
set selection time, we select location subset using thioagh and
then continue with the remaining propagation of the hashAathe
end of this hashtag’s propagation, we measure performditbe o
approach using this particular metric. We do this for allHtags
in the test set and calculate the mean score for this mgtposach

impact, which measures the percentage of hashtag occurrences thapair. This experiment is done for a given valuet.pindk. We set

were observed in the approximate location subset. It is eeéfas:

Impact = —=—
D |Om U Uml

where, the numerator is the number of occurrences that were o
served inS;7, after it was selected, and the denominator is the total
number of occurrences of the hashtag. The impact value sange
from 0.0 to 1.0, with 0.0 signifying no impact, while 1.0 sifying
maximum impact.

Impact Difference: If a hashtag is distributed uniformly across
large number of locations, then the best impact for a givemght

be small. In this case, the performance of an approach withiee-
sured as low, even if it selects the best set. Hence, we can als
measure the subsietpact differencethat measures the difference
between the impact for the best subset and the approximbsetsu
Itis defined as:

Ugms — Ulm
Impact Dif ference =1 — W

Like the other two metrics, the lower the value of differetfeebet-
ter is the approach. A value of 1.0 signifies the impact istidah
while a value of 0.0 indicates the subset has no impact at all.

5.3 Evaluating the Models

We now evaluate the performance of location subset setectio
approaches using the metrics defined in the previous secitn

£ = 0.5in (6) giving equal weight to both approaches.

Comparing the Models We begin by fixing the selection time for
each approach as 5 minutes (i&.,= 5) and the number of lo-
cations to selects as 3 (i.&:,= 3). How well do the approaches
predict future locations given only evidence of the first hinte’s
of a hashtag’s lifetime? We report the results across allcgmhes
for accuracy, impact, and impact difference in Table 1. Relat
accuracy measures the similarity between subsets selegtedr
approaches and the best subset; impact measures the actealtp
age of occurrences observed in the locations; and impdetelifce
measures the percentage difference between the best iamubitte
impact achieved using one of the approaches.

First, we observe that the approach combining the community
influence approach with spatial influence approattafing + spa-
tial) performs the best, with an accuracy of 42%, and impact of
40%, and an impact difference of 79%. Interestingly, we plise
that approaches based on the spatial influence model teretto p
form much better than approaches that use only historicsth-ha
tag propagations (e.g., linear regression). For examplke,at-
curacy of thespatial influence of transmitting + spatial and of
sharing + spatialis higher in all cases than all other approaches.
We see similar strong results for the combined approadhasst
mitting + spatial and of sharing + spatia) as compared to all
other approaches. Surprisingly, the community influereesetd ap-
proaches alone (e.gharingandtransmitting perform the worst,
even worse than the random and greedy approaches.

These results are significant because they illustrate tiperim
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Figure 8: (Color) Varying the selection time (top) and varying the number of locations predicted (bottom).

tance of prioritizing the spatial influence model over thenowu-
nity affinity models, but also the combined power of incogier
ing community affinity into the spatial influence model foe thest
overall performance. Selecting future locations that waidbpt a
hashtags with very little knowledge of how a hashtag is gamg
propagate is a difficult problem. Based on these resultspéhne
formance achieved by the model that combines sharing pildipab
with coverage probability is very encouraging. Most poptilash-
tags spread for several hours, but this model can identify 40
all future occurrences of a hashtag within 5 minutes of thehha
tag’s first appearance. Also, the quality of locations delédy
this model is high, as the locations it selected came clog8%6 of
the best performing locations.

Varying the Selection Time What if we increase the time until
the models have to make a prediction? That is, if we allow the
hashtags to propagate for even longer, what impact doebakies

on the predictive ability of the models as they have acceasldd
tional evidence? Hence, we next varied the location suledets
tion time () from 5 minutes to2 hours, keeping thé fixed at 20.

We evaluated each approach for each selection time (etgr, &f
minutes since a hashtag’s first appearance, after 10 mjrandso

on up to 120 minutes) as shown in the top row of Figure 8. We plot
the affect of varying the selection time against the five apphes,
showing accuracy in Figure 8(a), impact in Figure 8(b), anpact
difference in Figure 8(c).

We see that across all metrics, the approaches that usetaoth s
ing and transmitting influence coupled with spatial influeifthe
purple and light blue curves) improve with the increase gatmn
selection time. As the time to select locations increasash ap-
proach can observe a longer lifespan of a hashtag’s prdpagat
leading to stronger evidence for making better predictidngon-
trast, the community affinity approaches alosbgringandtrans-
mitting, in blue and green) degrade in quality as the selection time
increases (with a slight uptick for impact difference agérmin-
utes). These results further confirm the importance of thé&adpn-
fluence models as the single strongest predictor of hasptagd.

An interesting result we observe in this figure is the pertomoe
of approach that uses spatial influence alone to selectidosat
We observe that the curve (red-diamonds) correspondingiso t
approach stays relatively constant irrespective of theevalf ¢.
This approach selects locations just based on spatial imfeuand
hashtag distribution, hence a constant accuracy indithtgshe
probability scores for locations remain same irrespedaiive, i.e.,
the overall probability distribution for a hashtag caltath after
5 minutes is similar to its probability distribution calctea after
2 hours. This result further strengthens our assessmentedén S
tion 3.3, that early coverage for a hashtag is a good indicstits
final coverage.

Confirming the results from our previous experiment, we find
that approaches that use the spatial influence model in comitk
a community affinity model perform the best.

Varying the Number of Predictions: Finally, we evaluate the per-
formance of each approach by varying the number of locatanh
predicts. Hence, we vary the cardinalibyfrom 1 to 20, while fix-
ing the selection time at 5 minutes, as shown in the bottom row
of Figure 8. Across all three metrics — accuracy in Figure),8(d
impact in Figure 8(e), impact difference in Figure 8(f) — wmim
see the strong performance of the spatial influence moduis for
the spatial model alongpatial) as well as the model incorporating
community affinity into the spatial modefr@nsmitting + spatial
andsharing + spatia). As the number of locations increases, we
see the accuracy of all approaches increase since eactssatme
top locations correctly. We also see an improvement in impac
for all the approaches, with increasing cardinality. Tlasuit is
straightforward since increasing the number of locatiomglies a
higher number of occurrences are observed, which in tuneases
the impact. But, the magnitude and rate for improvement p&ict
varies for all the approaches, with all the approaches s®spatial
influence model showing greater impact than approachesusieat
community affinities only. This result is similar to the réswb-
served in Figure 8(b). Finally, we observe that increadiegcardi-
nality results in a decrease in impact difference for allrapphes.



5.4 Summary of Results
Based on this experimental study, we find that:

e First, distance does matter As shown in Table 1, we found
that the spatial influence model — based on Tobler’s first law o
geography — is the single most important explanation ofréutu

hashtag adoption. Distance matters mostly because hashtag

are fundamentally écal phenomenaHashtags typically oc-
cur in an originating location and subsequently in nearbghie
boring locations.

e Second, we additionally discovered that though the comiyuni
affinity influence model alone performs worse than the spa-
tial influence modein combination with the spatial influence

model we can achieve the best fit for future hashtag adoption.

This combination indicates that community affinities (like-
ture, language, and common interests) are a secondary facto

6. CONCLUSION

In this paper, we have begun an investigation of the glolralsp
of social media. We have studied the geo-spatial propestiagol-
lection of 755 million geo-tagged tweets and found that iy of

locations tend to share common hashtags and adopt themdaroun

the same time, compared with locations that are distaftn@iny
distant location pairs, though, exhibit similar patterris‘aose-
ness” in that they share hashtags and have a low hashtagadopt
lag, suggesting some additional factor is “bending spatefink
the two locations; and (iii) the early occurrences of a haglare
good indicators of the relative coverage of a hashtag'séupread
(either compact or widely diffuse). Based on these obskenvat
we developed two complementary models of hashtag spreagl — th
spatial influence model and the community affinity influencedm
els — and studied their effectiveness at predicting looattbat will
adopt hashtags in the future. We conclude thistance does mat-
ter as the single most important explanation of future hashiag-a
tion since hashtags are fundamentally local. We also fincctima-
munity affinities (like culture, language, and common iagts) en-
hance the quality of purely spatial models, indicating teeas-
sity of adequately incorporating non-spatial features mbdels of
global social media spread.

In our continuing work, we are interested in augmenting tae d
veloped models — that consider only the geo-spatial prigzedf
hashtags — with additional evidence of the content of thér-has
tags (e.g., since politics-related social media may spiétedently
than sports-related social media) and with the underlyiogjas
network. Recall that the study in this paper has been coeilplet
orthogonal to the underlying social network and how soaiaita-
gion affects hashtags spread. As part of this continuingkywe
are interested in linking these geospatial diffusion medelthese
related efforts.
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