
Content-Based Crowd Retrieval on the Real-Time Web

Krishna Y. Kamath
Texas A&M University

College Station, TX 77843
kykamath@cs.tamu.edu

James Caverlee
Texas A&M University

College Station, TX 77843
caverlee@cse.tamu.edu

ABSTRACT
In this paper, we propose and evaluate a novel content-
driven crowd discovery algorithm that can efficiently iden-
tify newly-formed communities of users from the real-time
web. Short-lived crowds reflect the real-time interests of
their constituents and provide a foundation for user-focused
web monitoring. Three of the salient features of the algo-
rithm are its: (i) prefix-tree based locality-sensitive hashing
approach for discovering crowds from high-volume rapidly-
evolving social media; (ii) efficient user profile updating for
incorporating new user activities and fading older ones; and
(iii) key dimension identification, so that crowd detection
can be focused on the most active portions of the real-time
web. Through extensive experimental study, we find signifi-
cantly more efficient crowd discovery as compared to both a
k-means clustering-based approach and a MapReduce-based
implementation, while maintaining high-quality crowds as
compared to an offline approach. Additionally, we find that
expert crowds tend to be “stickier” and last longer in com-
parison to crowds of typical users.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Information networks

General Terms
Algorithms, Experimentation

Keywords
clustering, social media, community detection, real-time web

1. INTRODUCTION
The real-time web has grown at an astonishing rate in

the past several years. As one example, Twitter has rapidly
grown from handling 5,000 tweets per day in 2007 to 50 mil-
lion tweets per day in 2010 to 140 million per tweets per

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

Figure 1: Examples of content based crowds.

day in 2011. During the recent run-up and immediate af-
termath of President Obama’s announcement about Osama
Bin Laden, Twitter boasted a peak of 5,000 tweets per sec-
ond (corresponding to 432 million tweets per day) and a sus-
tained average rate of 3,000 tweets per second over several
hours (corresponding to 259 million tweets per day).1 At an
order of magnitude higher, Facebook reported in 2009 that
it was handling around 1 billion chat messages per day,2 and
there is widespread evidence of massive growth in web-based
commenting systems (like on Reddit, Digg, and NYTimes)
and other real-time “social awareness streams”.

While long-lived communities have been one of the key
organizing principles of the Web, the real-time web sup-
ports the near instantaneous formation of ad-hoc commu-
nities linked by the real-time interests of their constituents.
These“crowds”range from groups of loosely-connected Twit-
ter users responding to a live presidential address, to users
sharing pictures about a chemical fire at a nearby refinery,
to flash mobs congregating at particular locations (and re-
vealing this location via services like Foursquare), and so on.
For example, Figure 1 shows example of two content based
crowds, one discussing the public release of Jay-Z and Be-
yonce’s baby pictures with 3 users (eonline, ap, ravengood-
win), and another crowd about NY Knicks vs LA Lakers
basket ball game with 2 users (bharris901, geneforeman).

1
http://blog.twitter.com/2011/03/numbers.html

2
http://www.facebook.com/note.php?note_id=91351698919

(a) tn (b) tn+1 (c) tn+2

Figure 2: Example of user vectors in 2-dimensional space showing the evolution of users during three time
intervals. Crowds are shown using a red boundary.

In contrast to traditional long-lived communities, these
crowds are dynamically formed and potentially short-lived,
often with only implicit signals of their formation within
the massive scale of the real-time web. While much research
has focused on community mining from large-scale systems
[10, 21, 25, 26], of event detection on the Web and in social
media [7, 8, 17, 24], and topic detection and tracking over
streaming news items [3, 4, 12], there is a great opportu-
nity to explore the near real-time extraction of crowds in
the critical moments of their initial formation. Efficiently
identifying these crowds of related users as they form and
as they evolve can benefit many domains including epidemi-
ological and disease control experts searching for evidence
of new outbreaks and the reaction of the public to new vac-
cines, municipalities interested in responding to local events
(like the recent Vancouver riots), finance experts monitor-
ing stock price jumps or crashes, political scientists track-
ing chatter about presidential debates, as well as average
users interested in local crowds (what restaurants are hot?)
and crowds associated with particular topics (e.g., sports,
movies).

In this paper we formalize the problem of crowd discovery
over rapidly evolving social media and provide solutions for
efficiently identifying crowds. Although we focus on text-
based social media streams popularized by Twitter and re-
lated services, the discussion and techniques are designed for
generic application to other temporally ordered social me-
dia resources. Concretely, this paper makes the following
contributions:

• We present an efficient algorithm for identifying clus-
ters of related users (crowds) from the real-time web
using a prefix-tree based locality hashing approach.

• We describe an efficient method for updating user pro-
files in rapidly evolving social media as users post new
messages.

• We show how to focus crowd detection via key dimen-
sion identification, so that crowd detection can be fo-
cused on the most active portions of the real-time web
and so resources are not wasted.

• We evaluate the performance of the proposed crowd
discovery algorithm over two Twitter datasets and we
find the proposed approach is significantly faster than
alternative approaches while maintaining high crowd
quality.

2. RELATED WORK
In addition to the works cited in the introduction, there

have been many efforts aimed at detecting cluster structure
in text-based collections [19, 9, 5]. But, these approaches,
however, are typically not designed for high-volume incre-
mentally updated domains as on the real-time web. Al-
ternatively, there is a large body of stream-oriented clus-
tering work for finding correlations in streaming data. For
example, StatStream [28] clusters evolving time series data
using the Discrete Fourier Transform. Both [3] and [11] ex-
plore two-stage approaches for finding clusters in low dimen-
sional data (unlike the case of text clustering, which typi-
cally is very high-dimensional due to the number of tokens
observed). Clustering over text streams has been studied in
[2, 18, 14]. These efforts have focused on the clustering of
independent text elements (e.g., new messages), whereas our
focus is on finding groups of related users by their sequences
of related posts to the real-time web.

The solution approach in this paper relies on locality-
sensitive hashing (LSH) for finding nearest-neighbors as a
primitive for crowd detection. Nearest-neighbor and approx-
imate nearest-neighbor search in a high-dimensional vector
space is a difficult problem that Indyk and Motwani [15, 13]
approach through the use of a family of randomized hash
functions that generate similar vector signatures if the vec-
tors are closer to each other in the high-dimensional space.
In [6], Charikar constructed the LSH function for cosine
similarity, which supports fast similarity between two high-
dimensional vectors by reducing them to bit-arrays of much
smaller dimensions. This result has been used in several
problems, including efficient noun clustering [23, 20, 22]. In
previous work, we studied crowd detection based on user
communication, without regard for the content of the mes-
sages as we do here [16].

3. CROWD DISCOVERY: OVERVIEW AND
SOLUTION APPROACH

Let U = {u1, u2, . . . , ui . . . } be a (potentially) unbounded
set of users posting messages to a real-time web stream such
as Twitter or Facebook. Each user may contribute an arbi-
trary number of messages, where the messages are ordered
in a non-decreasing fashion using the time-stamp values of
the messages. We say that a crowd C = {ui, u2 . . . ul}, at a
given time, is defined as a subset of users that are close
to each other at that time, where closeness is measured
using a similarity function sim(ui, uj). For example Fig-
ure 2, shows a simple scenario where users are mapped into

a 2-dimensional space (say, by using TF-IDF weights of the
words in the messages). In the initial figure at time tn, users
are sparsely distributed in the space and there are no clear
crowds. As users generate more messages, we see in the fol-
lowing two intervals the formation of several tight clusters
of users (“crowds”). Intuitively, these crowds correspond to
collections of users who are posting messages about similar
topics (e.g., the Super Bowl on one day and Presidential
elections the next day).

Given a user similarity measure sim(~ui, ~uk) and a user
similarity threshold ε, we formulate crowd detection as an
operation that preserves the following two properties:

Property 1: Every user in a crowd has at least one other
user in the same crowd, such that the similarity between
them is at least ε. That is, ∀ ui ∈ C ∃ uk : uk ∈ C, ui 6=
uk and sim(~ui, ~uk) ≥ ε

Property 2: Every user in a crowd has no other user out-
side the crowd, such that the similarity between them is at
least ε. ∀ ui ∈ C ¬∃ uk : uk ∈ S \ C and sim(~ui, ~uk) ≥ ε

These two properties ensure that (i) all users within a
crowd are more similar to users within the crowd than out-
side of the crowd; and that (ii) there does not exist any user
outside of a crowd who is similar to users within a crowd.

By viewing crowd detection in this way, we can avoid
memory-intensive approaches that require maintaining the
overall cluster structure (which may be unreasonable for
high-volume text); instead, we can formulate the crowd de-
tection problem using nearest-neighbor search as a primi-
tive, as illustrated in Algorithm 1. That is, for every new
message posted to the real-time web, we determine the user
nearest to the user posting the new message. If the sim-
ilarity between the user posting the new message and the
nearest user is at least ε, we add the user to the crowd to
which this nearest user belongs, if he is not already in it. If
the similarity does not exceed ε, we create a new crowd for
the given user. Kt is the set of all current crowds at time
t. While such an approach may allow long chains of users
(where the first user in a crowd is quite distant from the last
user), it has the compelling advantage of efficiency.

Algorithm 1 Crowd Discovery

for (u, d, t) ∈ I do
Determine the user nearest to u, un, and the crowd
un belongs to Cn.
if sim(~u, ~un) ≥ ε then

if u is not in crowd Cn then
Add u to Cn

end if
else

Create a new crowd C with a single user u and
add it to Kt.

end if
end for

Towards efficiently discovering crowds from the real-time
web, we make note of the following three challenges:

• Efficient User Profile Updating: Compared to tra-
ditional document clustering, in which documents them-
selves are static and the goal is to find clusters of re-

Figure 3: Linear growth of dimensions

lated documents, crowd discovery seeks to find clusters
of similar users in which users are constantly changing
(by posting new messages, changing areas of interest,
and so on). Hence, the first challenge is to develop an
appropriate representation for users that reflects their
current interests accurately and can be easily updated
every time they generate a new message.

• Efficient Crowd Assignment: The second challenge
is to determine an efficient method to determine near-
est neighbor for crowd assignment. To find nearest
neighbors there are several possible methods (includ-
ing linear search) and several space partitioning data
structures (e.g., k-d trees). However, due to the scale
of real-time web updates, such methods may incur a
high overhead. Hence, we propose a prefix-tree based
locality sensitive hashing method that supports O(1)
lookup of a user’s nearest neighbor, leading to efficient
crowd assignment.

• Identifying Key Dimensions: Even with a reason-
able method for updating user profiles and assigning
users to crowds, the real-time web is constantly grow-
ing due to the insertion of new phrases, hashtags, and
other artifacts of user-contributed content. Figure 3
shows the number of unique tokens encountered over
two 10-day Twitter samples (described more fully in
Section 4.1), leading to a linear growth in the dimen-
sions for representing users. Hence, the third challenge
is to develop a method to identify important dimen-
sions, so that crowd detection can be focused on the
most active portions of the real-time web and so re-
sources are not wasted.

In the following, we approach each of these three chal-
lenges in turn, before turning to an experimental evaluation.

3.1 Efficient User Profile Updating
In this section, we first develop a vector representation for

users that decays temporally, so that users are assigned to

crowds that reflect their current interests and then we show
how to efficiently update these user profiles as new messages
are generated.

3.1.1 Vector Representation with Fading Memories
Adopting a vector space model for users, let ~ui be the vec-

tor representation for user ui, where the elements of the vec-
tor correspond to tokens parsed from ui’s messages. There
are many domain-dependent choices for parsing messages,
including language-dependent parsers, entity extraction, stem-
ming, and so forth; for simplicity, we adopt a simple unigram
parser that treats all strings separated by whitespace as valid
tokens. Since the number of unique tokens corresponding to
dimensions are not known in advance, we represent each
user profile vector using an infinite co-ordinate space F∞

[1]. Under this model, a user ui at time t is represented as:

~ui
t = (V t

i1, V
t
i2, . . . , V

t
im, . . .)

where the User Vector Dimension (UVD) value V t
im, is the

value for ui in the mth dimension at time t. Let xtim be
the number of times ui generates m at time t, and X

tl
im =

{x1im, x2im . . . x
tl
im} be the set all occurrences of m generated

by ui until tl, then V
tl
im is defined as:

V
tl
im =

∑
xt
im∈X

tl
im

F(xim, t, tl) =
∑

xt
im∈X

tl
im

xtim (1)

where F is a function of xim, t and tl and is called the UVD
function.

In this way, a user is represented as the sum of his en-
tire message history. However, since crowds are designed
to reflect users with a similar current interest, such an ap-
proach may favor crowds of users who are similar in the
long-term. For example, we may identify crowds of students,
of entertainers, and of politicians, but miss cross-cutting
crowds that are drawn together by their current situation
(e.g., emergency-oriented crowds reacting to a local earth-
quake). An alternate approach is to construct user profile
vectors using the latest messages only. While such an ap-
proach has the advantage of being memory-less (and so, old
messages may be dropped with no penalty), grouping users
based only on their most recent messages may result in high
crowd fluctuation since crowd assignments may vary with
each new message.

To balance these two extremes, we propose to adopt a rep-
resentation that fades user vectors such that recently used
dimensions have higher values and older dimensions have
lower values. To decay user vectors, we design another UVD
function D, which decreases the score of inactive dimensions
and increases the score of active dimensions in user vectors.
The function D, re-calculates scores for xtoim at time tn, as
shown:

D(xim, to, tn) = λtn−to
u xtoim (2)

where λu ∈ [0, 1] is a constant know as the user dimension
score decay rate. Hence, we can re-write V

tl
im as:

V
tl
im =

∑
xt
im∈X

tl
im

D(xim, t, tl) =
∑

xt
im∈X

tl
im

λtl−t
u xtim (3)

Note that when λu = 1, the value of V
tl
im is same as that

calculated using F as the UVD function.

3.1.2 Efficient Updates
To calculate V

tl
im using (3), we have to maintain the entire

set X
tl
im. In the context of the real-time web, this can be

inefficient since it requires maintaining X
tl
im for all users and

all dimensions and since the calculation of V
tl
im would be

O(|Xtl
im|). To solve this problem we prove a proposition that

will help us calculate the value of V
tl
im efficiently in O(1) time

without requiring us to maintain the set X
tl
im .

Proposition 3.1. If tn−k is the latest time when ui gen-
erated a message with dimension m until tn, then the value
of the dimension at time tn, is given by:

V tn
im = λ

(tn−tn−k)
u V

tn−k

im + xtnim

where, V
tn−k

im and V tn
im are the values of dimension m for ui

at time tn−k and tn respectively.

Proof. LetX
tn−k

im be the set all occurrences of dimension
m in the messages generated by ui up to time tn−k. Then,
using (3) we get:

V
tn−k

im =
∑

xt
im∈X

tn−k
im

λ
tn−k−t
u xtim (4)

Using (2), ∀xtim ∈ X
tn−k

im we can write:

D(xim, t, tn) = λtn−t
u xtim = λ

(tn−tn−k)+(tn−k−t)
u xtim (5)

D(xim, t, tn) = λ
(tn−tn−k)
u λ

(tn−k−t)
u xtim (6)

where t is the time-stamp of every occurrence of m in mes-
sages generated by ui.

Using (3) again, we write,

V tn
im =

∑
xt
im∈X

tn
im

D(xim, t, tn)

=
∑

xt
im∈X

tn−k
im

D(xim, t, tn) +

n∑
n′=n−k+1

D(xim, tn′ , tn)

Using (4) and (6) we can now write

V tn
im = λ

(tn−tn−k)
u V

tn−k

im +

n∑
n′=n−k+1

D(xim, tn′ , tn)

Since ui did not generate any messages with dimension m
after tn−k until tn, ∀ n′ ∈ [n− k + 1 .. n− 1], we have:

D(xim, tn′ , tn) = λ
tn−tn′
u x

tn′
im = λ

tn−tn′
u .0 = 0

Hence,

V tn
im = λ

(tn−tn−k)
u V

tn−k

im +D(xim, tn, tn)

V tn
im = λ

(tn−tn−k)
u V

tn−k

im + xtnim

Note that, by definition xtnim 6= 0 if ui generates a message
with m, else it is 0. This proves the proposition.

In brief, we have described an approach to represent users
in high-dimensional vector space that reflects their current
interests and we have shown how to update this user profile
efficiently upon the arrival of each new user message.

3.2 Efficient Crowd Assignment
Given the user profile developed in the previous section,

we now turn to the challenge of assigning users to crowds as
outlined in Algorithm 1. This is the core step in crowd detec-
tion and is, in essence, a nearest-neighbor problem. To find
nearest neighbors there are several possible methods. The
simplest algorithm to determine nearest neighbor is through
linear O(n) search, which is not efficient due to the large
number of users on the real-time web. Alternatively, we can
use efficient space-partitioning methods like k-d trees, which
have a complexity of O(logn). Here, we propose a special-
ized variation of the randomized approach to discover near-
est neighbors by using locality sensitive hashing (LSH). In
this specialized version, we use an additional prefix tree data
structure to support O(1) lookup of a user’s nearest neigh-
bor, at a cost of requiring O(n) to look up the user’s next
nearest neighbor. But by constructing crowd detection as a
requiring only user’s single nearest neighbor (recall the two
properties at the beginning of this section), we can support
efficient crowd detection over the real-time web.

3.2.1 Similarity using Locality-Sensitive Hashing
We first describe a function to calculate the similarity be-

tween two vectors using LSH and then describe how we can
use this similarity function to determine nearest neighbors
efficiently using a prefix tree. Since users are represented as
vectors, we can use a metric like cosine similarity to deter-
mine the nearest neighbor. But, as described in [15], deter-
mining nearest neighbors using cosine similarity is inefficient
in high dimensions. Hence, we calculate the approximate
cosine distance between two vectors using the approach pro-
posed by Charikar [6].

In [6], the author proposed using LSH functions generated
using random hyperplanes to calculate approximate cosine
distance. Consider a set of vectors in the collection Rm.
Let ~r be a m-dimensional random vector, such that each
dimension in it is drawn from a 1-dimensional gaussian dis-
tribution with mean 0 and variance 1. Then the hashing
function h~r corresponding to ~r is:

h~r(~v) =

{
1 if ~r.~v ≥ 0
0 Otherwise

Now, if we have a setR = {~r1, ~r2 . . . ~r|R|} of suchm-dimensional
random vectors, then for a vector ~v, we can generate its
signature v̄ = (h ~r1(~v), h ~r2(~v), . . . h ~r|R|(~v)). Given two user
vectors ~ui and ~uj , the approximate cosine similarity between
them is given as:

sim(~ui, ~uj) = cos(θ(~ui, ~uj)) = cos((1− Pr[ūi = ūj]) π)
(7)

So, the closer the signatures, the greater is the cosine sim-
ilarity, and the more dissimilar the signatures, the lesser is
their cosine similarity. This equation measures approximate
cosine distance, and accuracy of this approximation can be
improved by using a longer signature, i.e, a larger R.

3.2.2 Nearest Neighbor using Prefix Tree
We now describe the procedure to find the nearest user un

for a user u, from whom we can determine the nearest crowd
Cn. We determine un using a set of permutation functions

P = {π1, π2, . . . , π|P |}, where each permutation function is
of the form:

π(x) = (ax+ b)mod p

where, p is a prime number and a, b are chosen randomly.
Let P be a collection of |P | prefix trees, where every prefix

tree corresponds to a permutation function π ∈ P . Now, to
add a vector ~v to P, first its signature v̄ is determined, and
then the signature is inserted into every prefix tree in P after
permuting it using the corresponding permutation function.
So for a given vector, |P | permutations of its signature are
stored in P. Every time we observe a new user vector it is
added to P. Similarly, every time we modify a user vector,
we remove its old signature from all the prefix trees in P
and add the new one.

To determine the crowd nearest to ~u in P, we first cal-
culate its signature ū. Then for every prefix tree in P, we
permute this signature using the corresponding permutation
function and find the nearest signature in the prefix tree,
by iterating through the tree one level at a time starting
from the root. After doing this step we end up with |P |
signatures, of which the crowd corresponding to the signa-
ture with smallest hamming distance is picked as the nearest
neighbor of ~u. As a result, we see that using a prefix tree in
combination with LSH, we can design an efficient algorithm
to assign users to crowds.

3.3 Identifying Key Dimensions
The final challenge is a consideration of the purpose of

the crowd monitoring application in the selection of the
key dimensions for representing user vectors. For exam-
ple, if the crowd detection system is intended for topic-
focused crowd detection (e.g., identify all “earthquake” re-
lated crowds, find all crowds related to “politics”), then the
user vectors could be weighted toward these key dimen-
sions (e.g., as in a scheme for weighting the dimensions
corresponding to the tokens “obama”, “debate”, “republi-
can”as more important dimensions than non-politics dimen-
sions). Potential solutions include pre-seeding the crowd
detection system with expert-labeled keywords or in identi-
fying high value terms by their inverse document frequency
(IDF), which weights key terms by their relative rarity across
all documents.

In this paper, we propose to select as key dimensions those
that reflect the general consensus of the real-time web. That
is, we seek to identify tokens that are globally popular at a
particular time for biasing the crowd detection toward these
tokens. In this way, crowds are defined both by users who
have posted similar messages recently (as described in the
previous section) and by reflecting topics of great impor-
tance to the overall system.

Concretely, our goal is to select from all dimensions the
most m significant dimensions. As the real-time web evolves
the list of top-m dimensions can then be updated frequently
to remove old dimensions and add new ones. Hence, we
require a metric to score the dimensions observed so far.
To score the dimensions observed in the stream, we use an
approach similar to the one used in scoring dimension score
for a user vector in Section 3.1.

Let ytd be the number of times a dimension d appeared
in the stream at time t. Then the score for ytod at time tn,

Algorithm 2 Crowd Discovery

Create R: Create the set R = {~r1, ~r1 . . . ~r|R|} of random
Gaussian vectors such that |R| << m.
Initialize P: Create the set of permutation functions
P = {π1, π2, . . . , π|P |}, where each permutation function
is defined using a prime number p and values a, b chosen
randomly. Initialize P as a collection of |P | prefix trees
and assign a unique permutation function from P to every
prefix tree in P.
for (u, d, t) ∈ I do

Update ~u: Update the user vector ~u using (d, t) as
described in Section 3.1. Generate new signature for
~u and add or replace it in P.
Generate ū: Generate the |R|-bit signature for ~u, ū
using R.
Step 1: Determine un and Cn: Get the user near-
est to u, un and the crowd un belongs to Cn ∈ Kt.
if sim(~u, ~un) ≥ ε then

if u is not in crowd Cn then
Step 2: Add u to Cn: Add u to crowd
Cn.

end if
else

Step 3: Create C: Create a new crowd C with
a single user u and add it to Kt.

end if
end for

tn ≥ to, is given by a function E , defined as:

E(yd, to, tn) = λtn−to
d ytod (8)

where λd ∈ [0, 1] is a constant know as the dimension score
decay rate.

Since a dimension can be observed several times in a
stream, the score for a dimension d at time t, W t

d , is cal-
culated as shown in Proposition 3.2

Proposition 3.2. If tn−k is the latest time when dimen-
sion d was observed on the stream until tn, then the dimen-
sion score for the dimension at time tn, is given by:

W tn
d = λ

(tn−tn−k)

d W
tn−k

d + ytnd

where, W
tn−k

d and W tn
d are the dimension scores at time

tn−k and tn respectively.

Proof. The proof for this is similar to the proof of Propo-
sition 3.1.

Hence, we can identify dimensions that reflect the con-
sensus of the current activity of the real-time web, so that
crowd detection can be focused on the most active portions
of the real-time web and so resources are not wasted.

3.4 Putting it All Together
Taken together, the high-level crowd discovery algorithm

described in Algorithm 1 and the three methods developed
– efficient user profile updating, efficient crowd assignment,
and identifying key dimensions – give us the crowd discovery
algorithm in Algorithm 2.

4. EXPERIMENTS
In this section, we report a series of experiments to study

crowd discovery. We evaluate the running time performance
of the proposed crowd discovery algorithm with other al-
gorithms for crowd discovery. We define metrics to mea-
sure quality of crowds discovered and using these metrics we
evaluate the quality of crowds discovered by several crowd
discovery algorithms. We study the factors impacting the
performance of the proposed algorithm, and finally we an-
alyze the properties of crowds discovered over two Twitter
datasets.

4.1 Dataset
To simulate a Twitter stream, we selected a set of Twitter

users and crawled their tweets using Twitter API. The users
in this set are labeled using 4 classes – technology, entertain-
ment, politics and sports. To collect this labeled dataset we
used the snowball sampling approach. This approach is as
follows:

• First, for every class we selected a set of 5 Twitter
users, called seed users, that belong to this class and
5 key words that describe the class. For example, for
the class sports, a seed user was “espn” and a keyword
was “sports”.

• We then used Twitter API to select all Twitter lists
that contain a seed user, such that the list’s name
contains a class specific key word. For example if
“sports news”and“news”are Twitter lists that contain
“espn”, then we select “sports news” but not “news”,
since the former has the keyword “sports” in its name.

• We then extracted a set of new users from the lists
selected in previous step and crawled their lists like
before.

Following these steps resulted in a “snowball” or chain of
crawling actions, which we stopped once we observed suffi-
cient users. At the end of this crawl, we were left with a set
of users, lists they belong to, with lists labeled with the class
they belong to. Using this information, for each domain we
selected around 1,200 top users and used their tweets to
simulate a labelled Twitter stream, resulting in about 1.6
million tweets for 30 days. A similar approach for sampling
class specific Twitter data is described in [27]. In addition
to this dataset (which we shall call the Experts dataset),
we collected a location-based dataset of users tweeting from
the Houston region who were selected through random sam-
pling. A 30-day sampling of this stream had about about 15
million tweets from about 107 thousand users. We use the
Experts dataset for all of our experiments, except for the
experiments in Section 4.7.

4.2 Setup
We compare the crowd discovery algorithm (CDA) pro-

posed in this paper with four alternatives: k-means cluster-
ing (k-means), a Map-Reduce implementation of k-means
clustering (MR k-means), a deterministic batched version of
the CDA approach (Iterative-CDA) – in which we iterate
through all the pairs of user vectors to find the best crowds
possible, and a Map-Reduce implementation of Iterative-
CDA (MR-CDA).

For user vector processing, we set the following parame-
ters: number of dimensions m = 199, 999, user dimension
score decay rate λu = 0.75 and dimension score decay rate
λd = 0.75. For efficeint crowd assignment, we set signature
length |R| = 23, number of permutation functions |P | = 13
and ε = 0.005.

In initial experiments, we varied the choice of k for k-
means, finding in many cases that k-means identified many
singleton crowds. For the experiments reported here, we
set the number of clusters as k = 0.95×number of items to
cluster.

4.3 Running Time Analysis
To evaluate the running time performance of the proposed

approach, we perform two experiments: (i) we use tweet sets
of varying sizes as input to all the algorithms and determine
the time taken by them to discover crowds; (ii) we mea-
sure the tweet processing rate of the algorithms. For these
experiments we use a 30 day sample of Experts stream.

Running Time with Clustering Algorithms: The plot
in Figure 4(a), shows the running times for the two k-means
clustering algorithms and CDA to discover crowds on data
collection of varying sizes. The running times graph is a
log-log graph, hence there are orders of magnitude differ-
ence between the running times of the algorithms. We see
that the time required to discover crowds using the pro-
posed algorithm is significantly lesser than that required by
the clustering algorithms. As the size of the message collec-
tion increases, both the clustering algorithms become slower.
This behavior is expected in case of iterative k-means, be-
cause of the extra iterations required by the algorithm, but
was not expected in the Map-Reduce version. Generally,
the Map-Reduced running time increases at a much slower
rate, but is still lesser than that of the iterative version. We
believe the worsening performance is because of the large
value of k. Larger k results is passing of greater number
of centroids to a map job which slows down the algorithm.
Hence, either of these algorithms are not efficient to discover
crowds.

Running Time with CDA Algorithms: We now run
similar experiments with the other crowd discovery algo-
rithms. As in the case of the clustering algorithms, we see
that CDA, in Figure 4(b), performs much better than the
batched CDA algorithms. The Iterative-CDA performs the
worst while the MR-CDA performs better after about 104

messages. The bad performance of MR-CDA on initial mes-
sage sets can be attributed the time spent by the MR cluster
in setting up the job and passing messages between various
workers.

Message Processing Rate with CDA Algorithms: To
compare the rate at which the algorithms process messages
as they arrive, we note the number of messages that the
algorithms have processed at equally spaced time intervals.
This comparison is shown in Figure 4(c). As expected, we
observe that the number of messages processed by the pro-
posed algorithm is more than that for the other CDA al-
gorithms. This result supports the result we observed with
running time Figure 4(b). Similar results were observed for
k-means clustering as well but are omitted due to the space
constraint.

4.4 Crowds Quality Analysis
We now evaluate the quality of crowds discovered using

the proposed crowd discovery approach. We know the class
to which users in our Twitter stream belong, hence, to eval-
uate crowd quality we can compare the crowds discovered
to this “ground truth”. While we do not expect all users be-
longing to a particular class (e.g., “sports”) to form a single
large crowd, we do expect that crowds that form will tend
to be composed of users belonging to these classes. We use
the same 30 day sample of the stream that we used in Sec-
tion 4.3. Like before, the experiments are run with the same
value for parameter m. We next describe evaluation metrics
that we use to measure quality of crowds and then present
performance of CDA against k-means clustering algorithms
and deterministic CDAs.

Quality metrics: Consider the set of crowds K = {C1, C2,
. . . , Cn} for users in set U and a set of classes Ω = {ω1, ω2,
. . . , ωw} to which users in U belong. To measure the quality
of crowds generated using crowd discovery algorithms we use
the following metrics.

Purity : To compute purity, we assign crowd to the domain
which is most frequent in it, and then the accuracy of this
assignment is measured by calculating the ratio of correctly
assigned users.

purity(K,Ω) =
1

|U |
∑
n

max
w
|Ci ∩ ωj |

NMI : Purity gives a good understanding of quality. But,
it is susceptible because high purity can be achieved when
there are large number of crowds, which we expect in crowd
discovery problem. Hence, to deal with this issue, we use
a secondary information theory based quality metric called
Normalized Mutual Information (NMI). It is defined as:

NMI(K,Ω) =
I(K,Ω)

[H(K), H(Ω)]/2

I(K,Ω) =
∑
n

∑
w

|Cn ∩ ωw|
|U | log

|U ||Cn ∩ ωw|
|Cn||ωw|

H(K) = −
∑
n

|Cn|
|U | log

|Cn|
|U |

where, I(K,Ω) is mutual information and H entropy.

Comparison with Clustering Algorithms: The com-
parison between quality of crowds discovered using the It-
erative k-means and that discovered using CDA is shown
Figure 5(a). We see that despite the significant improve-
ments in running time, the crowds discovered by the CDA
are still of high quality. We also notice, for all the metrics,
the quality of crowds generated using CDA is better than
the quality of crowds generated using a clustering algorithm.
The relatively poor performance of the clustering algorithm
can be attributed to the difficulties in estimating the number
of clusters k.

Comparison with CDA Algorithms: The comparison
between quality of crowds discovered using the Iterative-
CDA and that discovered using CDA is shown in Figure 5(a).
We see that crowds discovered by Iterative-CDA are always
better than that discovered using CDA. The lower values for

(a) Comparison with k-means (b) Comparison with CDA (c) Message processing rate comparison
of CDAs

Figure 4: Comparing the efficiency of crowd discovery (CDA) versus alternatives

(a) Quality of crowd discovery (b) User vector representation (c) Crowd assig. with prefix trees.

Figure 5: Crowd algorithm analysis

these metrics is expected in case of CDA, as it is a random-
ized and an approximate algorithm whereas Iterative-CDA
is an deterministic algorithm.

4.5 Impact of User Vector Representation
In Section 3.1, we described the method to exponentially

decay user vectors to help us discover temporally relevant
crowds. We evaluate the effectiveness of this approach by
analyzing the performance of CDA when the user vectors
are exponentially decayed and when they are not. To evalu-
ate the performance of the algorithm without decay, we set
λu = 1.0. The difference in quality of the crowds generated
by the algorithm using these two approaches is shown in
Figure 5(b).

The top plot of Figure 5(b), shows the running time of the
algorithms for this experiment. We observe that, thought
the running times for the algorithms is almost the same ini-
tially, the difference between them increases with time. This
is because, as time increases, the algorithm that decays user
vector and uses techniques to score dimensions, has the abil-
ity to remove dimensions when they become stale. This fea-
ture is not possible when the algorithm is run without decay.

As shown in the bottom plot of Figure 5(b), the quality
of crowds discovered using exponential decay is much better
than the crowds discovered without decay. When user vec-
tors are not decayed, old dimensions are not removed from
it, resulting in crowds being discovered which contain users
from different domains. This results in lower quality crowds.

4.6 Impact of Prefix Trees
We next analyze the impact of using prefix trees on effi-

cient crowd assignment. An alternative approach described
in [23] suggests representing P as a collection of sorted lists
of signatures rather than prefix trees. Such a structure is
robust in the sense that signatures are sorted and hence
nearest neighbor can be found faster than linear search, but
has the downside that determining the nearest neighbor and
adding a new vector takes O(logn) time, considering |P | is
constant. To characterize the impact of the prefix-tree based
locality-sensitive hashing approach, we run CDA both with
prefix trees and with sorted lists. The results are shown in
Figure 5(c).

The top plot shows the running time and the bottom plot
shows the quality of crowds discovered. We see that by
using prefix trees, we can discover crowds at speeds several
times the speed using sorted lists. As mentioned before, the
improved speed efficiency is because of the constant time
required to retrieve crowds in case of prefix tree instead of
O(logn) as in case of sorted lists.

The quality of crowds generated varies initially when the
number of crowds in the prefix tree is small because of ran-
domization involved in determining the nearest neighbor.
This variance is overcome as the number of crowds in the
prefix tree increases and the mean quality of crowds discov-
ered remains almost the same. After sometime, once we have
observed sufficient crowds, we observe that the crowds qual-
ity is almost same while using both prefix tree and sorted
lists.

Figure 6: Example of crowds related to Libya

4.7 Comparing Crowds
Finally, we explore the impact of the kind of users on

crowd formation. We compare the crowd size distribution,
followed by the lifespan distribution of the crowds. Then we
plot these two properties towards understanding crowding
behaviors in these two datasets.

The distribution of crowd sizes is shown in Figure 7(a).
We see that the Houston dataset tends to have larger crowds
in comparison to the Experts dataset. These larger crowds
may be attributed to the fact that the Houston dataset has
relatively more users in comparison to the Experts dataset,
and hence more users talking about a particular event re-
sulting in the formation of larger crowds. To understand
these dynamics better, we show the lifespan of these crowds
in Figure 7(b). The lifespan distribution shows that expert
crowds, despite being smaller, are mostly longer lasting than
the larger crowds discovered in Houston. Based on further
analysis, we find that the experts stream is more sticky –
that is, crowds in the experts stream added new users over
time and decayed more slowly.

We attribute this finding to the crowd formation proper-
ties of the Experts dataset, whereby crowds are initiated by
users who are popular within a particular domain and hence
tend to tweet similar things more often. This shared inter-
ests among users forms crowds that discuss chains of events
resulting in longer lifespans. While users in the Houston
dataset, which is made up of users with relatively varied in-
terests, form crowds that last only as long as the event they
are discussing is popular. Continuing this avenue of investi-
gation, we plot crowd size versus life span in Figure 7(c). If
the crowds in the Experts dataset are really sticky, as we ex-
pect, this should be observed across all the crowds of differ-
ent sizes, i.e, only larger crowds should not have contributed
in making the life span distribution in Figure 7(b) appear
the way it does. We observe that irrespective of crowd size,
expert crowds always seem to have a higher lifespan than
Houston crowds. This clearly shows the way users in ex-
pert crowds are tweeting and the content of their tweets is
making them stick together longer than Houston crowds. In
addition to this observation, we also see that the stickiness
of the crowds increases with crowd size. This is observed
both for the experts and Houston crowds.

We also find that events that last for a long time have more
number of crowds that are spread across the event’s dura-
tion. An example of such a long term event is the revolution
in Libya, and crowds related to this appear throughout the
experiment duration following a daily pattern based on users
activity, as shown in Figure 6.

5. CONCLUSION
We have seen how the proposed content-driven crowd dis-

covery algorithm can efficiently identify newly-formed com-
munities of users from the real-time web. The approach
leverages optimizations to locality-sensitive hashing via pre-
fix trees, incorporates efficient user profile updating, and
identifies key dimensions for supporting crowd detection. In
our continuing work we are interested to understand the dy-
namics if crowds formation and their evolution. We are also
interested in analyzing the impact geography and culture
has on crowd formations.

6. ACKNOWLEDGMENTS
This work was supported in part by NSF grant IIS-1149383,

DARPA grant N66001-10-1-4044 and a Google Research Award.
Any opinions, findings and conclusions or recommendations
expressed in this material are the author(s) and do not nec-
essarily reflect those of the sponsors.

7. REFERENCES
[1] Infinite coordinate space. wikipedia: Examples of

vector spaces, 2011.

[2] C. C. Aggarwal. A framework for clustering massive
text and categorical data streams. In In: Proc. SIAM
conference on Data Mining, pages 477–481, 2006.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for clustering evolving data streams. In
Proceedings of the 29th international conference on
Very large data bases - Volume 29, VLDB ’2003, pages
81–92. VLDB Endowment, 2003.

[4] J. Allan. Introduction to topic detection and tracking,
pages 1–16. Kluwer Academic Publishers, Norwell,
MA, USA, 2002.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
March 2003.

[6] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing,
STOC ’02, pages 380–388, New York, NY, USA, 2002.
ACM.

[7] S. Chen, H. Wang, S. Zhou, and P. S. Yu. Stop
chasing trends: Discovering high order models in
evolving data. In ICDE ’08: Proceedings of the 2008
IEEE 24th International Conference on Data
Engineering, pages 923–932, Washington, DC, USA,
2008. IEEE Computer Society.

[8] H. Choi and H. Varian. Predicting the present with
google trends. Technical report, Google, 2009.

[9] D. R. Cutting, D. R. Karger, J. O. Pedersen, and
J. W. Tukey. Scatter/gather: a cluster-based approach
to browsing large document collections. In Proceedings

(a) Crowd size distribution (b) Lifespan distribution (c) Crowd size Vs Lifespan

Figure 7: Comparing crowds discovered across the two datasets

of the 15th ACM SIGIR, SIGIR ’92, pages 318–329,
New York, NY, USA, 1992. ACM.

[10] I. Dhillon, Y. Guan, and B. Kulis. A fast kernel-based
multilevel algorithm for graph clustering. In KDD ’05,
pages 629–634, New York, NY, USA, 2005. ACM.

[11] W. Fan, Y. Koyanagi, K. Asakura, and T. Watanabe.
Clustering over evolving data streams based on online
recent-biased approximation. chapter Knowledge
Acquisition: Approaches, Algorithms and
Applications, pages 12–26. Springer-Verlag, Berlin,
Heidelberg, 2009.

[12] M. Franz, T. Ward, J. S. McCarley, and W.-J. Zhu.
Unsupervised and supervised clustering for topic
tracking. In Proceedings of the 24th annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’01, pages
310–317, New York, NY, USA, 2001. ACM.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proceedings
of the 25th International Conference on Very Large
Data Bases, VLDB ’99, pages 518–529, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[14] L. Gong, J. Zeng, and S. Zhang. Text stream
clustering algorithm based on adaptive feature
selection. Expert Syst. Appl., 38:1393–1399, March
2011.

[15] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, STOC ’98,
pages 604–613, New York, NY, USA, 1998. ACM.

[16] K. Y. Kamath and J. Caverlee. Transient crowd
discovery on the real-time social web. In Proceedings
of the fourth ACM international conference on Web
search and data mining, WSDM ’11, pages 585–594,
New York, NY, USA, 2011. ACM.

[17] C. X. Lin, B. Zhao, Q. Mei, and J. Han. PET: A
statistical model for popular events tracking in social
communities. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge
discovery and data mining (KDD), pages 929–938,
New York, NY, USA, 2010. ACM.

[18] Y.-B. Liu, J.-R. Cai, J. Yin, and A. W.-C. Fu.

Clustering text data streams. Journal of Computer
Science and Technology, 23(1):112–128, 2008.

[19] C. D. Manning, P. Raghavan, and H. Schtze.
Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[20] F. Moerchen, K. Brinker, and C. Neubauer. Any-time
clustering of high frequency news streams. 2007.

[21] M. E. J. Newman. Fast algorithm for detecting
community structure in networks, September 2003.

[22] S. Petrović, M. Osborne, and V. Lavrenko. Streaming
first story detection with application to twitter. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, HLT ’10,
pages 181–189, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

[23] D. Ravichandran, P. Pantel, and E. Hovy.
Randomized algorithms and nlp: using locality
sensitive hash function for high speed noun clustering.
In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 622–629, Stroudsburg, PA, USA, 2005.
Association for Computational Linguistics.

[24] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
shakes twitter users: real-time event detection by
social sensors. In WWW ’10, pages 851–860, New
York, NY, USA, 2010. ACM.

[25] L. Tang and H. Liu. Community Detection and
Mining in Social Media. Morgan and Claypool, 2010.

[26] X. Wang, L. Tang, H. Gao, and H. Liu. Discovering
overlapping groups in social media. In Proceedings of
the 2010 IEEE International Conference on Data
Mining (ICDM), pages 569–578, Washington, DC,
USA, 2010. IEEE Computer Society.

[27] S. Wu, J. M. Hofman, D. J. Watts, and W. A. Mason.
Who says what to whom on twitter. WWW 2011,
2011.

[28] Y. Zhu and D. Shasha. Statstream: statistical
monitoring of thousands of data streams in real time.
In Proceedings of the 28th international conference on
Very Large Data Bases, VLDB ’02, pages 358–369.
VLDB Endowment, 2002.

