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Abstract

Breaking news, viral videos, and popular memes are all
examples of the collective attention of huge numbers of
users focusing in large-scale social systems. But this self-
organization, leading to user attention quickly coalescing and
then collectively focusing around a phenomenon, opens these
systems to new threats like collective attention spam. Com-
pared to many traditional spam threats, collective attention
spam relies on the insidious property that users themselves
will intentionally seek out the content where the spam will
be encountered, potentially magnifying its effectiveness. Our
goal in this paper is to initiate a study of this phenomenon.
How susceptible are social systems to collective attention
threats? What strategies by malicious users are most effec-
tive? Can a system automatically inoculate itself from emerg-
ing threats? Towards beginning our study of these questions,
we take a two fold approach. First, we develop data-driven
models to simulate large-scale social systems based on pa-
rameters derived from a real system. In this way, we can vary
parameters – like the fraction of malicious users in the sys-
tem, their strategies, and the countermeasures available to
system operators – to explore the resilience of these systems
to threats to collective attention. Second, we pair the data-
driven model with a comprehensive evaluation over a Twitter
system trace, in which we evaluate the effectiveness of coun-
termeasures deployed based on the first moments of a burst-
ing phenomenon in a real system. Our experimental study
shows the promise of these countermeasures to identifying
threats to collective attention early in the lifecycle, providing
a shield for unsuspecting social media users.

Introduction
Collective attention – exemplified by breaking news, viral
videos, and popular memes that captivate the attention of
huge numbers of users – is one of the cornerstones of large-
scale social systems. As Wu and Huberman have noted,
collective attention describes how “attention to novel items
propagates and eventually fades among large populations”
(Wu and Huberman 2007). In the context of social media, an
item – be it a video, web page, image – attracts the interest of
a small group, then gathers a larger following as additional
attention focuses on it, then (in some cases) exploding across
social media to large-scale attention, and then finally fading
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in interest. Popular examples include YouTube videos that
accumulate millions of views in a few days, memes attract-
ing huge audiences on Reddit (http://www.reddit.com) and
4chan (http://www.4chan.org), spikes in search volume on
Google and Twitter following breaking news, and so forth.
As a result, many researchers have begun examining these
phenomena, to model their dynamics, lifecycles, and fu-
ture spread, e.g., (Goetz et al. 2009; Hong, Dan, and Davi-
son 2011; Lehmann et al. 2012; Lerman and Ghosh 2010;
Romero, Meeder, and Kleinberg 2011).

Guided by the knowledge that collective user interest may
quickly coalesce, malicious users have begun threatening the
quality of information associated with this collective atten-
tion. As illustration, consider these two examples of collec-
tive attention spam found in large-scale social systems:

• YouTube: In the immediate aftermath of the London
Olympics Opening Ceremony on July 27, 2012, we
found that four of the top-five videos returned for the
YouTube query “london olympics opening ceremony
2012” were videos tagged with keywords associated
with the London Olympics Opening Ceremony, but
that were expressly designed to promote an unrelated
spammer-controlled website. Figure 1 shows one exam-
ple, which includes a URL linking to a spam website.

• Twitter: Twitter publishes the current most-trending
topics, and so spammers have been observed abusing
this signal of collective user interest by “trend-stuffing”
these popular topics with spam messages including ma-
licious URLs (Irani et al. 2010). Figure 2 shows a sam-
ple search result for the trending topic “Glen Rice” for
which three out of the most recently posted six messages
are spam. All three spam messages include the same
URL and multiple trending topics, but are posted from
multiple accounts, adding to the growing evidence (e.g.,
(Ratkiewicz et al. 2011; Thomas et al. 2011)) that spam-
mers strategically post to Twitter in an organic-like way
to simulate the behavior of non-spam users.

In contrast to traditional email spam and social spam, col-
lective attention spam relies on users themselves to seek out
the content where the spam will be encountered. In email
spam, as illustrated in Figure 3(a), the spammer relies on
a bulk attack based on the hope that a small percentage of
users who are contacted will actually click on a link in an



Figure 1: Example YouTube video designed to capitalize on
collective interest during and immediately after the London
Olympics Opening Ceremony.

email. Social spam, as illustrated in Figure 3(b), is typically
a more targeted attack than email spam, and relies on some
social mechanism for coupling a spammer with an intended
target (e.g., becoming friends in a social network, following
a user on Twitter). In contrast, collective attention spam in
Figure 3(c) targets users who are already inherently inter-
ested in the topic. In this way, users themselves have self-
selected for interest in the topic and made themselves sus-
ceptible to collective attention spam.

While email and social spam have been the subject of
considerable study, there is a significant gap in our under-
standing of the susceptibility of social systems to collective
attention threats. Our goal in this paper is to begin to under-
stand this phenomenon better, building on our preliminary
effort to detect collective attention spam reported in (Lee et
al. 2012). How susceptible are social systems to malicious
attacks? What strategies by malicious users are most effec-
tive? And least effective? How do users of a system access
items of interest and how does this affect their exposure to
threats? Can a system automatically inoculate itself from
emerging attacks? What kinds of countermeasures can be
deployed and how effective are they at limiting the effec-
tiveness of malicious users?

Our approach.
Answering these questions is challenging. Large-scale so-

cial systems are typically proprietary and responsible to their
current user base, so it is infeasible to automatically “stress-
test” such a system by subjecting it to hundreds or thousands
of malicious users. An alternative is to take a representative
snapshot of a system and measure the current level of threats
in the system and characterize their reach and effectiveness.
However, this approach alone may not be suitable for un-
derstanding the system’s future state, as social systems are
constantly evolving. Hence, we take a two fold approach.
First, we take a data-driven modeling approach, in which
we simulate a large-scale social system based on parame-
ters derived from a real system. In this way, we can vary
system parameters – like the fraction of malicious users in
the system, their strategies, and the countermeasures avail-
able to system operators – to explore the resilience of these
systems to threats to collective attention. We pair the data-

Figure 2: Spam messages targeting the Twitter trending topic
“Glen Rice”.

driven model with a comprehensive evaluation over a Twit-
ter system trace, in which we evaluate the effectiveness of
countermeasures deployed based on the first moments of a
bursting phenomenon in a real system.

Summary of key findings.
In summary, this paper presents the first comprehensive

study of collective attention spam in social systems.
• Through our data-driven model, we find that social sys-

tems are extremely susceptible to collective attention
spam. With spammers accounting for only 5% of all
users, we find that every legitimate user can be exposed
to spam. At even higher spammer penetration, the social
system becomes unusable with spam dominating.

• We find that strategically organized spammers can col-
lude to selectively push spam payloads, increasing the
exposure of legitimate users to spam content.

• On a positive note, we find that the countermeasures de-
ployed early in the lifecycle of a collective attention at-
tack can dramatically reduce the amount of spam in the
system. Through testing over 20 million Twitter mes-
sages, we validate the model findings and see that these
countermeasures can effectively identify threats to col-
lective attention early in the lifecycle with 98% accuracy,
reducing “spamness” up to 73% and providing a shield
for unsuspecting social media users.

A Data-Driven Model for Studying Collective
Attention Threats

In this section, we present a data-driven modeling approach
for simulating collective attention and threats. Our goal is
to answer questions about the susceptibility of social sys-
tems to collective attention threats and to explore techniques
for limiting this impact. We begin by describing how both
good and bad users post content to the social system, and
how the system itself supports information access. We de-
scribe how the model is seeded and validated, and then we
investigate (i) threats from individual spammers; (ii) threats
from coordinated spammers; and (iii) finally, we examine
countermeasures. In the following section, we revisit these
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Figure 3: Three spam approaches. Collective attention spam relies on the users themselves to seek out the content where the
spam will be encountered.

model-driven results through an experimental study over a
real Twitter trace.

System Model
We consider a social system of interest S, consisting of a
set of content items C (e.g., videos, tweets, etc.), a set of
topics T for which each content item is associated (e.g., the
“London Olympics” topic, the “Steve Jobs” topic, etc.), and
a set of users U , who participate in the system by posting and
viewing content items. For example, a user in U may post
a tweet “Thank you #SteveJobs The world will miss you”,
where the tweet is associated with the topic indicated by the
hashtag #SteveJobs. Similarly, a user may post a video to
YouTube associated with the “London Olympics” topic by
including a tag or descriptive text at the time of upload. We
use the symbols u, c, and t to denote a user in U , a content
item in C, and a topic in T .

Posting Model
To populate a social system, we initialize the system with a
set of topics and a set of users. To model users in a social
system, we define two sets of users: a good user set U+ and
a bad user set U−. Good users post content items that are as-
sociated with a “correct” topic. Bad users, on the other hand,
post content items that are irrelevant to the topic they are
associated with. For example, a bad user may post a spam
video, but intentionally describe it as a “London Olympics”
video. When users post to the system, we assume they have
access to both the set of topics T as well as the current sub-
set of “popular” topics Tpop (in practice, these popular top-
ics may be known to users via prior knowledge or explicitly
advertised by the system, as in the case of Twitter trend-
ing topics or popular YouTube videos). The system proceeds
in step-wise fashion; at each time increment, users generate
content items according to a particular posting model. Good
users post according to the good user model:

Good User Model:
for each user u ∈ U+ do

with probability γ+ decide to post:
with probability δ+:

select a popular topic t ∈ Tpop and relevant item c;
else:

select at random a topic t ∈ T and relevant item c.

At each time increment, a good user chooses to post some-
thing with the user content generation probability γ+. If a
user decides to post a content item, an already popular topic
is selected with probability δ+; alternatively, the user de-
cides to post to a random topic. A bad user follows a similar
process, but always posts spam content items:

Bad User Model:
for each user u ∈ U− do

with probability γ− decide to post:
with probability δ−:

a popular topic t ∈ Tpop and spam item c;
else:

select at random a topic t ∈ T and spam item c.

Notice that the user content generation probability γ and
the popular topic probability δ may vary between the good
and bad user models. As part of our data-driven simulation,
we will vary these parameters to reflect different spammer
behaviors. For example, a spammer may adopt a high rate of
content generation relative to good users (e.g., γ− � γ+)
in an attempt to flood the system with spam content. Al-
ternatively, a spammer seeking to maximize their potential
audience may choose to focus only on popular topics and so
adopt a popular topic probability much greater than the good
user model (e.g., δ− � δ+).

Collective Attention Access Models
Given the approach for populating a social system, we now
consider how users access the content posted in the system.
We assume that users monitor topics by one of two methods:
• By recency: In the first access model, users interested in

a topic access the k-most recently posted items related to
the topic. This recency approach is akin to the “Most Re-
cent Uploads” functionality on YouTube, viewing com-
ments associated with a blog by their posting order (from
recent to oldest), and Twitter’s basic search.

• By relevance: The second access model imposes a rel-
evance ordering over content items associated with a
topic. This relevance-based approach may incorporate
the popularity of an item (e.g., rank images in order
of the number of clicks they have accumulated), con-
tent and link-based ranking (e.g, applying IR principles),
or learning-to-rank methods. For modeling purposes, we



Table 1: A sample of 101 popular topics. In total, there are ∼13m messages, of which 3.7% are spam.
No. Topic Period Total Lifespan # of messages
1 #SomeWhereInTheHood 2011-09-26 04:13:22 ∼ 2011-09-26 17:01:22 12 hrs 48 mins 93,871 (2.5% spam)
2 #ThatOneEx 2011-09-26 13:00:12 ∼ 2011-09-26 23:21:15 10 hrs 21 mins 58,217 (3.0% spam)
3 #thewayiseeit 2011-09-27 07:17:59 ∼ 2011-09-28 01:23:39 18 hrs 06 mins 201,682 (4.6% spam)
4 #LawsMenShouldFollow 2011-09-27 08:54:23 ∼ 2011-09-28 01:24:03 16 hrs 30 mins 181,524 (4.0% spam)
... ... ... ... ...
98 #DoctorsBetterThanConradMurray 2011-11-07 16:17:07 ∼ 2011-11-08 04:18:30 12 hrs 02 mins 68,370 (12.2% spam)
99 #WhaILove 2011-11-08 03:49:57 ∼ 2011-11-09 03:51:00 24 hrs 02 mins 174,695 (3.1% spam)
100 #hometownslogans 2011-11-08 05:07:32 ∼ 2011-11-09 03:09:14 22 hrs 02 mins 59,529 (5.5% spam)
101 #ThingsThatYouShouldKnow 2011-11-08 21:45:02 ∼ 2011-11-09 10:53:53 13 hrs 09 mins 95,542 (3.6% spam)

assume that content items are ranked by their occurrence
count, with all duplicates removed to maintain diver-
sity (i.e., item ci posted 20 times is ranked first; item
cj posted 10 times is ranked second; and so on).

User interest in a topic is based on the amount of content
items posted to the topic. So, if topic ti is the most popular
topic according to the good and bad user models, then it will
be monitored by the most users. In this way, as items become
more bursty, collective attention in them rises accordingly.

Measuring Spam Impact
To evaluate the impact of bad users on inserting spam into
the system, we measure the overall spamness, which is
a measure similar to NDCG@k (Järvelin and Kekäläinen
2000). Note that NDCG@k is a metric to measure the qual-
ity of top k search result. For a user accessing topic t, we
have:

Spamness(t, k) =

∑k
i=1 w(ci) ∗

1
log2(1+i)

Norm(k)

where

w(ci) =

{
1, if ci is a spam content item;
0, otherwise.

and k is the number of items (e.g., messages or tweets)
shown in a search result by a search system, and
Norm(k) =

∑k
i=1

1
log2(1+i) is a normalizing constant.

Spamness varies from 0 to 1, with 0 signifying no impact
to 1 signifying all of the items viewed by a user are spam.
If users view 10 items at a time (k = 10), with three spam
items, spamness ranges between 0.200 and 0.469, depend-
ing on where the spam items are located in the search result;
if they are positioned in the top, spamness will be high. As
a rule-of-thumb we consider a spamness of 0.2 or greater to
indicate a high-level of spam, corresponding to a user en-
countering 3 or more spam items for every 10 items encoun-
tered.

Seeding and Validating the Model
To accurately model real social systems for a data-driven
simulation, we require baseline parameter settings. How-
ever, there are no standard datasets of collective attention
spam. Hence, we sampled a collection of popular topics and
their associated messages from Twitter between September

and November 2011. We polled Twitter’s trending topics ev-
ery 5 minutes and collected the messages associated with
each trending topic. In total, we collected 19,275,961 mes-
sages posted by 3,989,563 users across 354 trending topics.

But how many of these messages are actually spam? It is
important to find a baseline estimate so that the model pa-
rameters can be seeded realistically. To assess the amount
of spam in the dataset, we systematically checked whether
a user associated with a message had been suspended by
Twitter for engaging in spam behaviors. If an account is sus-
pended, Twitter will redirect the request to a standard “sus-
pension” page: http://twitter.com/account/suspended. Not
all suspended accounts may have actually engaged in spam,
so we further assessed these accounts. Concretely, we ran-
domly sampled 200 messages each from the messages
posted by suspended accounts and from those posted by non-
suspended accounts. Two human judges manually labeled
the 400 messages as either spam or non-spam. From the
non-suspended accounts, 199 out of 200 messages sampled
were labeled as non-spam messages. From the suspended
accounts, 187 out of 200 messages sampled were labeled
as spam messages. Based on this high accuracy, we make
the simplifying assumption that all messages posted by sus-
pended users are indeed spam so that all ∼19 million mes-
sages can be automatically labeled.

A sample from the top-101 topics with the most mes-
sages is shown in Table 1. Together, these topics account for
12,954,965 messages. A topic has on average 132,725 mes-
sages and 3.7% of them are generated by spammers, who
account for around 1.5% of all accounts in the dataset.

Following the observed spam amount in the real data, we
set the fraction of spammers in the system as 1.5%. We then
varied the content generation probability (γ), and probability
of picking popular topics (δ) to find an initial model setting
that emulated the real data distribution. Arriving at initial
settings of γ+ = 0.1, γ− = 1.0, δ+ = 0.4, and δ− = 0.75,
we arrive at a topic distribution shown in Figure 4(a) follow-
ing the heavy-tailed distribution as shown in Figure 4(b),
which is similar to the expected distribution of bursty so-
cial media. Note that these initial settings fit our intuition,
with bad users posting more often than good users and post-
ing exclusively to popular topics. We find that small changes
to these parameters make little qualitative difference to the
conclusions drawn in the following. Based on these initial
parameter settings, we next explore the following research
questions: how susceptible are social systems to malicious



(a) Topic distribution (b) Log-log graph

Figure 4: The left figure depicts a topic distribution generated by the model. Each color denotes a topic. The right figure depicts
a log-log graph showing the frequency of number of content items associated with each topic in the simulation data. The
heavy-tailed distribution is similar to bursty social media.

(a) From 0 to 5% (i.e., 0 ∼ 0.05 in the x-axis) (b) From 0 to 100% (i.e., 0 ∼ 1 in the x-axis)

Figure 5: Evaluating the impact of increasing the fraction of spammers in the system.

attacks? what strategies by malicious users are most effec-
tive (e.g., individual attack, group-based coordinated attack,
or combination of individual and coordinated attacks)? What
kinds of countermeasures can be deployed and how effective
are they at limiting the effectiveness of malicious users?

Threats from Individual Spammers
We’ve seen in one example system (Twitter) that about 1.5%
of users are collective attention spammers. Suppose this
fraction of spammers increases. What impact will this have
on the amount of spam that legitimate users are exposed to?
For this first experiment, we vary the fraction of spammers
from 0 to 100%, (we keep the same γ and δ, but increase
the fraction of spammers). We see in Figure 5(a) that natu-
rally, the spamness of the system increases with an increas-
ing number of spammers. Interestingly, the recency-based
access approach fairs significantly worse than the relevance-
based one, crossing the spamness threshold of 0.2 when less
than 1% of all users are spammers. The relevance-based ap-
proach is less susceptible to spam since individual spam-
mers cannot selectively push particular items; in contrast so
long as users access the most-recent items, spammers can
easily insert spam items that will be viewed. Although the

relevance-based approach is more resistant to spammers, if
the fraction of spammers were to increase only slightly to
2%, then the spamness threshold would be passed. As the
fraction of spammers increases beyond 5%, we see in Fig-
ure 5(b) that neither access approach can significantly limit
the amount of spam in the system, with both approaches
near or above a spamness of 0.5 with just 20% spammers.
At even higher ranges, presumably the social system would
become unusable and unappealing to legitimate users, with
spam dominating.

Threats from Coordinated Spammers
The threat so far has considered individual spammers who
do not coordinate their actions; that is, there is no common
spam payload shared across multiple spammers for perhaps
increasing its reach. Hence, in this next experiment we con-
sider a coordinated spam approach in which spammers are
assigned to a group which is associated with a common pool
of spam payloads. For the following experiment, we assume
that spammers share a common pool of spam payloads, and
we vary the number of spam payloads.

Using this coordinated approach, we observe in Fig-
ure 6 that the recency-based approach is largely unaf-



Figure 6: Coordinated Spam: By focusing their efforts,
groups can achieve even higher impact.

Figure 7: With as few as 20% adopting the group strategy,
spamness passes the 0.20 threshold.

fected, but that it remains highly susceptible to spam. The
relevance-based approach shows that spammers have a po-
tential “sweet spot” for targeting spam. At a low number
of payloads, the spamness is relatively low since the spam-
mers promote a few payloads which possibly pollute one
or two out of the top-k results. As the number of payloads
increases, the coordinating spam group can achieve an im-
pact equal to or even better than under the recency-based
approach. However, as the number of payloads continues to
increase, the effectiveness for the coordinating spam group
falls, because the power promoting payloads is distributed
across too many payloads, meaning no single one can pene-
trate the top-k, and hence be exposed to end users interested
in the topic.

What if spammers adopt a mixed strategy, balancing be-
tween the individual and the coordinated approach? Figure 7
compares the robustness of the two access approaches to a
mixed spam strategy. We observe the continued poor resis-
tance of the recency-based approach. To effectively target
the relevance-based approach, spammers need only adopt
very little collusion (i.e., with 20% adopting the group strat-
egy, spamness passes the 0.20 threshold). At even higher-
levels of collusion (≥80%), spammers are even more effec-
tive than under the recency-based approach, further confirm-
ing the dangers of strategically organized spammers.

Figure 8: Applying a simple rule-based countermeasure
greatly reduces spamness, but is not effective against strate-
gic behavior.

Countermeasures
So far we have seen that the relevance-based access ap-
proach is generally more resistant than recency to collec-
tive attention spam, but that both are extremely susceptible
to only slight changes in the fraction of spammers and to
strategic efforts to coordinate spam behavior. We now con-
sider the impact of countermeasures to collective attention
spam to better understand under what scenarios spam may
be detected and filtered. We consider two countermeasures:

Countermeasure 1: Rule-Based Filtering. The first is a
rule-based filtering approach, which is potentially easy to
deploy in a real-system, but that may not be adaptable to
changes in behavior by malicious users. We consider a sim-
ple rule that considers the ratio of users to content items:

PayloadScore(t, p) = 1− # of distinct users

# of content items

where t and p denote a topic and a payload, respectively.
The rule-based filtering approach counts # of content items
containing a payload p in the topic t and # of distinct users
who generate the content items, and then filters out content
items exceeding a threshold. The intuition is that collective
attention spammers may strategically use common payloads,
so if fewer users post more of the same item (e.g., a common
URL or spam image) they can be filtered out.

Setting a threshold of 0.1 and applying this countermea-
sure to the recency-based approach makes little difference
since the spamness is already so high (as we saw in pre-
vious experiments). However, applying this countermeasure
to the relevance-based approach results in a dramatic reduc-
tion in spamness as shown in Figure 8. While encouraging,
it is not obvious that such improvements could be observed
in practice, with spammers strategically changing their be-
havior. We’ll revisit the effectiveness of such a rule-based
countermeasure in the following section.

Countermeasure 2: Supervised Classification. A second
countermeasure is a spam detector relying on supervised
classification principles. The intuition is that system oper-
ators may be able to sample evidence of spam early in the



Table 2: Evaluating the potential effectiveness of a low-
accuracy (40%) and a high-accuracy (90%) collective spam
detector.

Access Approach Avg Min Max
Recency 0.228 0.198 0.279
+ low-accuracy detection (40%) 0.120 0.102 0.156
+ high-accuracy detection (90%) 0.041 0.030 0.052
Relevance 0.176 0.148 0.215
+ low-accuracy detection (40%) 0.115 0.099 0.138
+ high-accuracy detection (90%) 0.036 0.027 0.044

lifecycle of a collective attention phenomenon (e.g., sam-
pling and labeling spam tweets from a trending topic). Based
on this early evidence, perhaps an effective classifier can be
quickly deployed for filtering out subsequent spam. To eval-
uate such an approach, we consider two detectors: a low-
accuracy spam detector that can only filter out 40% of all
spam items as they enter the system, and a high-accuracy
spam detector that can filter out 90% of all spam items. As
an example, a low-accuracy detector may be built on im-
perfect crowdsourced spam labeling, while a high-accuracy
detector may have been refined over large carefully curated
spam datasets.

We show in Table 2, the hypothetical performance of two
detectors versus the baseline (no countermeasure) case over
a 90 minute “run” of the system model. At each one-minute
time unit, users post content, the detectors are applied, and
the spamness of the results from the access approaches are
calculated. We see over the 90 minutes that even the low-
accuracy spam detector achieves good results, pushing the
spamness well below the 0.2 threshold. The high-accuracy
performs very well, with spamness below 0.06 in all cases.
When increasing the fraction of spammers in the system, we
find similarly robust results suggesting that effective coun-
termeasures are a necessity for countering threats to collec-
tive attention in social media.

Countermeasure Deployment on Twitter
Based on the data-driven model, we have identified the need
for collective attention spam countermeasures. Though ef-
fective in simulation, it is unclear of such countermeasures
are achievable in real social systems. Since many instances
of collective attention are bursty and unexpected, it is diffi-
cult to build spam detectors to pre-screen them before they
arise. Hence, in this section we study the viability of quickly
deploying collective spam countermeasures based on the
first moments of a bursting phenomenon. We examine the
Twitter trace described in the previous section, consisting of
101 topics associated with 13 million messages. We investi-
gate when a countermeasure may be optimally deployed to
a trending topic. Early deployment of a supervised classifier
has the potential to greatly reduce spam subsequently asso-
ciated with the topic, but at a risk of learning only a limited
model and resulting in less robust classification (resulting in
higher false positives and false negatives). Late deployment
has less potential to reduce the total amount of spam (since
presumably most of it will have already arrived by the time
of deployment), but will be more robust in its detection.

Metrics
To evaluate the quality of a countermeasure, we augment the
spamness measure with several standard spam metrics: ac-
curacy, false positive rate (FP) and false negative rate (FN).
Additionally, we measure the total spam detected (TSD)
over a topic’s lifespan:

TSDtopic(%) =
# of detected spam

total # of spam in the topic
The goal of a countermeasure is to reduce the most

amount of spam, so total spam detected complements the
traditional measures of accuracy, false positive rate, and
false negative rate. For example, a countermeasure that is
deployed late in the lifecycle of a topic may be very robust,
with high accuracy and low false positives and false nega-
tives, but may only detect a small fraction of all spam. Why?
Because most of the spam occurred before the countermea-
sure was ever deployed. An effective countermeasure should
balance accuracy and the other measures with the total spam
detected, so that unsuspecting users are shielded from spam.

Countermeasure 1: Rule-Based Filtering
We begin by considering a static rule-based filtering ap-
proach, based on the principles described in the previous
section. In our observations of Twitter trending topics, we
see that many spam messages contain a common adver-
tisement or URL payload. In contrast, messages posted by
legitimate users are more varied. For example, for the topic
#DearHair, we noticed similar messages of the form:

@9rappermode9 OMG, #DearHair RT Have you
seen this??WTF how could it happen with hair?? :
http://t.co/xcPx6JFe

@ enoughsaid OMG, #DearHair RT Have you
seen this??WTF how could it happen with hair?? :
http://t.co/fVD4UAbC

where both URLs redirect to the same spam destination.1
We can define the payload as the message content after

eliminating all hashtags, usernames, and URLs. In the exam-
ple, the payload is OMG, RT Have you seen this? ?WTF how
could it happen with hair??. With this payload definition and
the simple payload score rule as presented in the previous
section: PayloadScore(t, p) = 1 − # of distinct users

# of contents , we
evaluate how many spam messages can be detected from the
Twitter trace. In the best case, with a threshold of 0.1, we
find that only 20% of all spam messages across all 13 mil-
lion messages can be filtered (i.e., the average TSD is 20%).

While the space of all potential rules is large, we can see
that a rule-based approach is likely to be insufficient by it-
self to reduce collective attention spam. Hence, we next ex-
plore in greater detail the supervised classification approach,

1To further illustrate the potential impact of collective attention
spam, we accessed the bitly records for these URLs. URLs in 102
messages redirect to the same destination via various bitly URLs.
One of the bitly URLs had been clicked a total of 1,424 times, indi-
cating the effectiveness of targeting collective attention (available
at http://bitly.com/usaend+).
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Figure 9: Evaluating Countermeasure 2: Supervised Classi-
fication. Average accuracy and false positive rate reported
across 101 topics.

which promises potentially more adaptability to ongoing
collective spam prevention.

Countermeasure 2: Supervised Classification
We next investigate the viability of a supervised classifier
for detecting collective attention spam that targets popular
topics. Our goal is to predict whether a messagem posted to
a trending topic (i.e., by including the associated hashtag or
keyword) is a spam message through a classifier c:

c : m→ {spam, non− spam}
Our classification approach is that given a set of mes-

sages associated with a popular topic, we create a training set
containing messages generated before a deployment time x
since the topic has become popular, and the rest of the mes-
sages associated with the topic belong to a testing set. We
create multiple pairs of training and testing sets for different
hourly deployment times. For example, for a trending topic
with a 10-hour lifespan, we consider deploying the counter-
measure at hour 1, at hour 2, and so on up to hour 9. In this
way, we independently create 9 training sets, each of which
contains messages posted during the first 1 hour, 2 hours,
and so on up to 9 hours, respectively. Corresponding to the
training sets, we create 9 testing sets containing the rest of
messages.

Since collective attention spam targets topics as they be-
come popular, detecting these spam messages as soon as
possible is very important. Our goal is to explore the trade-
off between early deployment and late deployment. Under
what circumstances does a supervised classifier filter collec-
tive attention spam? For the classifier, we adopt a decision
tree based Random Forest classifier as a supervised learning
method following previous success reported in (Lee, Eoff,
and Caverlee 2011).

Feature Selection. Before building a classifier, finding good
features is very important for high accuracy. We build classi-
fiers based on 10 features extracted from each message: (1)
# of URLs; (2) # of hashtags; (3) # of @mentions; (4) is a
message retweeted?; (5) does a message contain a question
mark?; (6) does a message contain an exclamation mark?;
(7) the length of a message; (8) the number of words in a
message; (9) the length of a payload (again, given a mes-
sage, we first remove @mention, URLs and hashtags and
call the remaining text a payload); and (10) the number of
words in a payload.

Table 3: Top 10 features.
Feature χ2 Value Avg Spam Avg Good
# of URLs 56,795 0.67 0.01
length of message 13,700 85.27 75.7
length of payload 11,398 46.86 48.43
# of words in payload 6,497 9.13 10.31
# of words in message 6,407 10.63 11.03
# of hashtags 3,343 1.25 1.1
# of @mentions 3,162 0.1 0.54
is retweet 2,115 0.06 0.38
has exclamation mark 1,797 0.23 0.14
has question mark 843 0.08 0.04

Table 4: On average, the supervised classifier countermea-
sure achieves 98% accuracy, detecting 50% of all spam mes-
sages.

Topic Tr. Time Acc FP FN TSD
#SomeWhere... 2 hrs 99.09 0.003 0.247 72.43
#ThatOneEx 8 hrs 98.85 0.002 0.152 62.11
#thewayiseeit 5 hrs 99.29 0.003 0.113 47.67
#LawsMenSh... 4 hrs 99.51 0.003 0.083 49.01
... ... ... ... ... ...
#DoctorsBe... 3 hrs 97.75 0.006 0.096 76.82
#WhatILove 3 hrs 98.17 0.005 0.496 36.33
#hometowns... 5 hrs 96.97 0.013 0.344 46.61
#ThingsTha... 8 hrs 98 0.006 0.312 33.09
Average 5 hrs 97.57 0.007 0.384 50.16

In order to measure whether each feature has power to
distinguish between spam and non-spam messages, we com-
pute its χ2 value. If a feature has a positive χ2 value, it will
have distinguishing power. Table 3 presents the average χ2

values of the 10 features across 101 topics. We observed that
all features have power to distinguish between spam and
non-spam messages. For example, we see that the number
of URLs per message is 0.67 for spam, but only 0.01 for
non-spam messages.

Detection Across 101 Topics. Next, we build a collective
attention spam classifier over each of the 101 popular topics
and evaluate them. For each topic, we build a classifier every
hour since the topic has become popular. In total, we built
2,020 classifiers for 101 topics (i.e., 2,020 classifiers = 101
topics * 20 classifiers). The first question is whether spam
messages detected in the early stages may accurately iden-
tify spam that follows as a topic becomes popular. Hence, in
Figure 9(a) we report the average classification accuracy for
training sets of varying time windows. We measure accuracy
for each topic independently and then report the average ac-
curacy in each hour. That is, 1 hour in the x-axis means that
the training set consists of messages posted within 1 hour
after the topic became a trending topic (and hence, made
available to spammers as a potential target), and the test-
ing set consists of messages posted after 1 hour. The y-axis
shows the accuracy when we use the training set to build a
classifier and predict labels of the messages in the testing
set. This experiment emulates a real deployment scenario
of such a collective attention spam detector, in which par-
tial data is available for predicting future spam. Notice that
as the training set grows in size the classification result be-
comes better. Figure 9(b) shows the false positive rate – in-



Table 5: Combining countermeasure outperformed either the
rule-based filtering approach and the supervised classifica-
tion approach.

Accuracy (%) FP FN TSD (%)
97.63 0.007 0.359 54.89

dicating how many real non-spam messages are classified as
spam messages by the classifier. Overall, the false positive
rate is low.

As we have discussed, however, the goal is not only to
have high accuracy and low false positives, but also to de-
tect more spam messages as early as possible. In Table 4
we present a sample of the detection results, along with the
average result across all 101 topics. Each topic’s best train-
ing time varies depending on the volume of generated mes-
sages and the number of spam messages before the train-
ing time. Overall, building a classifier with the first five
hours’ messages gives us 97.57% accuracy, 0.006 FP, 0.384
FN and 50.16% total spam detected (i.e., how many spam
messages out of all spam messages in the topic a classi-
fier detected correctly). Not only does this countermeasure
outperform the rule-based filtering approach (50% TSD ver-
sus 20% TSD), but it has the advantage of being adaptable
to future spammer behaviors (so long as the feature set is
maintained). We also observe a high variability in the TSD
across topics; some topics are easy for spam detection (with
TSD > 80%), while others are very difficult. This suggests
that our preliminary feature set could be refined to better tar-
get these difficult-to-detect cases.

Combining Countermeasures
Finally, we consider the effectiveness of combining both
countermeasures (rule-based + supervised classification).
Does rule-based filtering detect spam messages that a classi-
fier would misclassify? For this combination, we first apply
the rule-based filter and then apply the supervised classifier
to the remaining messages.

Table 5 presents the evaluation result of the com-
bined spam detection approach across 101 topics, achieving
97.63% accuracy, 0.007 FP, 0.359 FN and 54.89% TSD. We
can observe that the combined approach outperformed either
the rule-based filtering approach and the supervised classifi-
cation approach.

We evaluate this combined approach from the perspective
of our users accessing collective attention information in the
system. Returning to the spamness measure (again, which
indicates the prevalence of spam items in the top-k results
accessed by users), we evaluate the quality of the recency-
based and relevance-based information access approaches
both with and without the combined countermeasure.

For this experiment, we assume that a user issues a topic
as a query (a hashtag in Twitter domain or a phrase) once
per minute. For the recency approach, the system returns the
10-most recently posted messages. For the relevance-based
approach, the system first retrieves all relevant messages
posted within the past one hour and then ranks messages
(by grouping popular payloads, ranking by their occurrence
count, and then removing duplicates to maintain diversity).

In this experiment, the combined countermeasure reduces
spamness by average 59% for the recency-based approach
and by average 73% for the relevance-based approach across
all 101 topics.

Summary
Through our twofold approach – data-driven modeling cou-
pled with evaluation over a system trace – we have seen that
social systems are extremely susceptible to collective atten-
tion spam. With spammers accounting for only 5% of all
users, we have found that every legitimate user can be ex-
posed to spam. At even higher spammer penetration, the so-
cial system becomes unusable with spam dominating. We
have also seen how this threat to collective attention can
be augmented through strategically coordinated spammer
behaviors to selectively push particular spam payloads, in-
creasing the exposure of legitimate users to spam content.
While daunting, we have seen preliminary evidence that
carefully-crafted countermeasures may be effective deter-
rents to collective attention spam – based on high accuracy
(up to 98%) and spamness reduction (up to 73%) with a
low false positive rate (meaning few non-spam messages
are incorrectly labeled). We found that it is possible to filter
collective attention spam messages by learning from early-
age spam messages in a topic. And since the countermea-
sures using rules and supervised classification are relatively
lightweight, these methods can be applied for near real-time
spam filtering.

An open question is how to verify that the spam messages
in the first few hours used to bootstrap the learning approach
are indeed spam. We’re considering two approaches: (i) fil-
tering spam messages by URLs based on Blacklists; (ii) us-
ing crowd workers in crowdsourcing sites to label samples
of early messages containing a popular topic.

Related Work
Threats to information systems have been omnipresent for
years. We characterize two related streams of research to
collective attention spam: email spam and social spam.

Email spam: To prevent and detect email spam, many ap-
proaches have been developed, including content-based fil-
tering like whitelisting, blacklisting, keyword-based, statis-
tical classification (Androutsopoulos et al. 2000), heuristic-
based filtering (Team 2004), collaborative filtering (Prakash
2004), network-level clustering approach (Qian et al. 2010),
spambot identification (Stringhini et al. 2011), and behav-
ioral blacklisting (Ramachandran, Feamster, and Vempala
2007). Researchers have also analyzed the network-level
characteristics of spammers (Ramachandran and Feam-
ster 2006), the underlying business operations of spam-
advertised enterprises (Kanich et al. 2011) and common
spam in tweets and email (Lumezanu and Feamster 2012),
have quantified the effect of email spam on behavior and en-
gagement of email users (Dasgupta et al. 2012), and have
studied the spam value chain (Levchenko et al. 2011).

Social spam: Several research efforts have found a high
degree of reciprocity in social networks (e.g., (Kwak et al.
2010)), meaning that many users may elect to make them-
selves susceptible to a spammer (e.g., by becoming “friends”



and subsequently the target of spam messages). Jagatic et al.
(Jagatic et al. 2007) have shown that adding “social” con-
textual clues (like sending a spam message from a known
“friend” account) can increase the effectiveness of such at-
tacks. Similarly, Brown et al. (Brown et al. 2008) showed
that context-aware attacks in social systems are very effec-
tive. Other types of social spam have been described and
solutions proposed. Examples include Twitter-based threats
like link farms (Ghosh et al. 2012) and trend-stuffing (Irani
et al. 2010), video spam (Benevenuto et al. 2009), and tag
spam (Koutrika et al. 2008).

Complementary to many of these existing spam threats,
collective attention spam relies on the users themselves to
seek out the content where the spam will be encountered.
And since collective attention spam is often bursty and unex-
pected, it is important to understand how effectively a coun-
termeasure may be deployed to limit its impact, particularly
as collective attention begins to coalesce.

Conclusion
In this paper, we have presented a dual study of the robust-
ness of social systems to collective attention threats through
both a data-driven modeling approach and deployment over
a real system trace. We have explored the resilience of large-
scale social systems to threats to collective attention, ob-
serving that relevance-based access methods are more robust
than recency-based ones and that only slight increases in the
fraction of spammers in a system can fundamentally disrupt
the quality of information. We have identified two counter-
measures – rule-based filtering and supervised classification
– and demonstrated their effectiveness at filtering spam dur-
ing the early development of a bursting phenomenon in a
real system.
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