
Identifying Hotspots on the Real-Time Web

Krishna Y. Kamath
Texas A&M University

College Station, TX 77843
kykamath@cs.tamu.edu

James Caverlee
Texas A&M University

College Station, TX 77843
caverlee@cse.tamu.edu

ABSTRACT

We study the problem of automatically identifying“hotspots”
on the real-time web. Concretely, we propose to identify
highly-dynamic ad-hoc collections of users – what we re-
fer to as crowds – in massive social messaging systems like
Twitter and Facebook. The proposed approach relies on
a message-based communication clustering approach over
time-evolving graphs that captures the natural conversa-
tional nature of social messaging systems. One of the salient
features of the proposed approach is an efficient locality-
based clustering approach for identifying crowds of users in
near real-time compared to more heavyweight static cluster-
ing algorithms. Based on a three month snapshot of Twit-
ter consisting of 711,612 users and 61.3 million messages, we
show how the proposed approach can efficiently and effec-
tively identify Twitter-based crowds relative to static graph
clustering techniques at a fraction of the computational cost.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering;
H.3.4 [Systems and Software]: Current awareness sys-
tems

General Terms

Algorithms, Performance, Experimentation

Keywords

Real-time, Social, Graph, Clustering

1. INTRODUCTION

This paper focuses on identifying emerging “hotspots” on
the real-time social web. The social web is the fastest grow-
ing phenomenon on the web, enabling millions of users to
generate and share knowledge. Example sites include Face-
book, Flickr, and Twitter; similar social systems are increas-
ingly being adopted by governments and enterprises inter-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.

Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

ested in exploiting the emergent collective knowledge (“wis-
dom of the crowds”) embedded in the activities and actions
of their users. In general, a“hotspot”could be defined by the
posting and sharing actions of users in social systems, for ex-
ample triggered by an offline event (e.g., Facebook posts and
Tweets in response to a live Presidential debate or a chemical
fire at a nearby refinery) or by an online phenomenon (e.g.,
reaction to Internet memes, online discussion). Detecting
these hotspots as they arise in real-time is an important and
fundamental building block for enabling new real-time web
applications, applications related to identification and dis-
semination of disaster and emergency-related information,
content personalization, social information discovery, among
many other emerging social mining applications.

Towards the goal of identifying online hotspots, we fo-
cus in this paper on identifying crowds of users through an
analysis of their online actions. A single user action – for
example, posting a Tweet mentioning a smoke plume at a
nearby factory – though perhaps interesting itself, does not
convey a strong community or social-based importance to
the user action. In contrast, a flurry of activity associated
with a “crowd” is a strong indicator of an emergent online
phenomenon that may be worth identifying and directing
to interested users. Unlike the more static and long-lived
group-based membership offered on many social networks
(e.g., fan of the LA Lakers), our goal is to support the discov-
ery of organic and highly-temporal group affiliation, which
we refer to as transient crowds.

Transient crowds are dynamically formed and potentially
short-lived. Hence, it is a major challenge to efficiently iden-
tify coherent crowds across a potentially vast collection of
non-obviously connected user actions. Considering Twitter
alone, there are potentially 100s of millions of active users
inserting new messages into the system at a high-rate. How
can we identify and extract real-time crowds efficiently with-
out sacrificing crowd quality?

2. CROWD IDENTIFICATION

We propose to model crowd formation through a message-
based communication clustering approach over time-evolving
graphs. The efficient locality-based clustering approach for
identifying crowds of users is developed on the notion that
changes in a small region of a graph should not affect the
entire graph (reflecting locality in the messaging system).

2.1 Preliminaries

Historically, direct communication between people has been
mostly unobservable or unavailable for large-scale web min-

1837

ing. But with the rise of new social messaging systems like
Twitter and Facebook, communications between users can
be monitored. For example, Twitter supports the public
messaging of users through the inclusion of @�username� in
a Twitter post (a “tweet”). So a tweet from the user nod
can be addressed to the user kykamath like so: “@kykamath
What do you think about the new iPad?”. This type of ob-
servable communication is on the rise and a significant por-
tion of all messages posted on Twitter, with estimates plac-
ing the percent of all tweets containing the @�username� at
30% (or about 7 million observable communications per day)
[1]. Based on these observable communication patterns, we
study how to efficiently discover transient crowds. We now
give some definitions before framing the problem.

Definition (Time-Evolving Communication Network)
A time-evolving communication network is an undirected
graph Gt(V, E) graph with |V | = n vertices and |E| = m

edges, where each vertex corresponds to a user in the social
messaging system and an edge corresponds to a communi-
cation between two users. The weight of an edge between
vertices u and v at time t is represented by wt(u, v).

The communication network is time evolving because the
relationship between users – as indicated by wt(u, v) –
changes over time. For concreteness, we focus on purely
communication-based properties (the recency and number
of messages between the users) for determining the edge
weights in the time-evolving communication network.

Definition (Transient Crowd): A transient crowd C ∈
Kt is a time-sensitive collection of users who form a cluster
in Gt, where Kt is the set of all transient crowds in Gt.
A transient crowd represents a collection of users who are
actively communicating with each other at time t.

Our goal then is to discover the set of transient crowds Kt

that exist in the communication network Gt(V, E) at time t.
For practical crowd discovery in a large time-evolving com-
munication network, however, we face two key challenges:
First, systems like Facebook and Twitter are extremely large
(on the order of 100s of millions of unique users), plac-
ing huge demands on the computational cost of traditional
community detection approaches (which can be O(n3) in
the number of users [3]). Second, these services support a
high-rate of edge addition (new messages) so the discovered
crowds may become stale quickly, resulting in the need to
re-identify all crowds at regular intervals (again, incurring
the high cost of community detection). The bursty nature
of user communication demands a crowd discovery approach
that can capture these highly-temporal based clusters.

2.2 Locality in Social Messaging Systems

To support transient crowd discovery in Twitter-like ser-
vices with 100s of millions of participants, we propose to
leverage the inherent locality in social messaging systems.
Intuitively, transient crowds are made up of a very small
percentage of users compared to the entire population of
the social network. Hence, new messages (corresponding to
the addition of edges to the communication network) should
have only a local influence on the crowds that exist at any
given time. That is, changes in a small region of a graph
should not affect the entire graph. In a dataset of 61 mil-
lion Twitter messages described in Section 3, we have con-
firmed the existence of this spatial locality by finding that

only about 1% of users are within two hops, meaning that
an edge insertion has only a local effect.

To take advantage of spatial locality, we propose to aug-
ment a traditional (expensive) graph clustering algorithm by
selectively applying the algorithm to small portions of the
entire communication network, thereby saving the compu-
tational cost of running the algorithm over the entire large
network. Let Cti represents the i

th crowd in Kt. Users
are assigned to one and only one crowd, i.e., Cti ∩ Ctj =
φ, ∀ Cti, Ctj ∈ Kt. To discover Kt, we could apply one
of a number of graph clustering algorithms, including MCL
[6], multilevel graph clustering [2], etc. For concreteness in
this paper, we consider min-cut clustering [3, 4], a popu-
lar graph clustering algorithm that has shown good success
across real-world datasets like web pages, citation networks,
etc. To begin our development of locality-based clustering,
we first present some preliminaries to describe min-cut clus-
tering.

Minimum cut: The minimum cut of a graph G with re-
spect to vertices s and t, where s ∈ S, t ∈ T , is defined as
partition of V into S and T such that, the total weight of
edges connecting the partitions is minimum. This is repre-
sented as c(S, T). For an undirected graph G we can define
a weighted tree TG called the minimum-cut tree [4]. We can
determine c(S, T) by analyzing the path from s to t in TG,
where the value of c(S, T) is equal to the smallest edge on
this path.

Min-cut clustering: The min-cut clustering algorithm [3]
clusters a graph G first by adding an artificial sink t. All of
the vertices of G are connected to the artificial sink with an
edge capacity of α, to form a modified graph G

�, where α is
a parameter guiding the quality guarantees of the resulting
clusters. The minimum-cut tree T

� for G
� is then calculated.

The connected components of T
� obtained after removing

the artificial sink t are clusters in G. Min-cut clustering
relies on the special parameter α to ensure the quality of
the clusters generated, where:

c(S, V − S)
|V − S| ≤ α ≤ c(P, Q)

min(|P |, |Q|) (1)

with, P∩Q = φ and P∪Q = S. By tuning this α parameter,
the number and size of the resulting clusters can be varied
(from one large cluster with all nodes to a trivial clustering
consisting of n singleton nodes).

2.3 Locality-Based Clustering

Of course, we could directly apply the min-cut clustering
algorithm to the large time-evolving communication network
Gt directly. The output would be a set of clusters Kt which
we could take to be transient crowds, however, at a con-
siderable expense. Coupled with the need to re-compute
clusters as the network evolves, straightforward application
of a traditional graph clustering approach is infeasible for
efficient transient crowd discovery. Towards exploiting spa-
tial locality for efficient crowd discovery, we must address
two issues: (i) The application of min-cut clustering to a
particular subgraph of the entire communication network;
and (ii) The determination of which subgraphs of the com-
munication network to select for clustering.

Subgraph clustering: The first challenge is to perform
local clustering, given an identified region of the commu-
nication network (corresponding to some locally impacted

1838

portion of the network). By clustering a local region of the
communication network we can begin to reduce the expense
of clustering the entire network. Given a subgraph S (the
part of the communication network impacted by edge addi-
tion) to cluster, the algorithm first contracts Gt to G

�
t. As

shown Algorithm 1, this approach then creates a new graph
G
��
t by adding an artificial sink ws to G

�
t and connecting all

the vertices of S to t with edges of capacity α and all the ver-
tices in (V �−S) with edges of capacity of α|V −S| as in [5].
It then determines the minimum-cut tree T

��
t for G

��
t . The

connected components obtained after removing ws from T
��
t

are the new clusters (which correspond to transient crowds).
In this way, only a small portion of the communication net-
work is impacted, leading to more efficient clustering that
clustering the entire network.

Algorithm 1 ClusterSubGraph(S)

1. Contract Gt: Reduce Gt to G
�
t by replacing vertices

V − S with a new vertex x. All the resulting loops are
deleted and parallel edges are replaced with a single edge
with weight equal to the sum of the edges.
2. Expand G

�
t: Construct a new graph G

��
t by adding

vertex ws to G
�
t(V

�
, E

�). Connect ws to v, ∀v ∈ S with
edge capacity of α and ws to v

�
, ∀v� ∈ (V � − S) with edge

capacity of α|V − S|.
3. Minimum-cut tree: Determine minimum-cut tree
T
��
t for G

��
t . The connected components obtained in T

��
t

after removing vertices ws and x from it are the clusters
in S.

Subgraph selection: The second challenge is to deter-
mine which subgraphs are to be selected for clustering, i.e.
how do we select S in Algorithm 1? Selecting too many
subgraphs for re-clustering may result in expensive compu-
tation, whereas selecting too few may result in poor crowd
quality. Following [5], we adopt an approach triggered on
each edge insertion to identify subgraphs that need to be
clustered. Depending on the position where an edge is in-
serted and the effect of edge addition on the quality of clus-
tering there are four ways to select clusters for local clus-
tering. The first case is when an edge is added within an
existing cluster Cu. In this case there is a probability that
this addition might have resulted in subclusters within Cu,
that improve clustering quality. Hence, only Cu is selected
for clustering (Case i). An edge can also be added between
2 clusters. In this case, if the quality of clustering is main-
tained in spite of this edge addition, then re-clustering is
not required (Case ii). Otherwise, if the quality of cluster-
ing is reduced, then we select both clusters for re-clustering
(Case iv). If the addition of an edge between 2 clusters
results in satisfying the condition for cluster merging, then
the 2 clusters are merged (Case iii). The pseudocode for
subgraph selection is given in Step 2 of Algorithm 2.

3. EXPERIMENTS AND RESULTS

In this section we explore the impact of locality-based
crowd discovery compared to the static graph clustering ap-
proach without the locality optimizations.

3.1 Twitter Dataset

To study crowd detection in a real-world setting, we focus
on the Twitter micro-blogging service. Through a mix of

Algorithm 2 Locality Clustering Algorithm

For every new edge (u, v) added to the graph, perform the
following 3 steps.
1. Initialization: If the added edge has vertices that
have not been observed before add them to vertex set
V . Create singleton clusters for the new vertices and add
them to cluster set K.
2. Clustering: Let u, v belong to clusters Cu and Cv

respectively. Now depending on the conditions that match
perform the corresponding clustering operations:

Case i. If the vertices belong to same cluster then
updating the edge weights might have resulted in forma-
tion of clusters within this cluster. Check for new clusters
using ClusterSubGraph(Cu).

Case ii. If the vertices belong to different clusters
and the addition of the edge does not reduce the qual-
ity of clustering, then perform no action. The quality of
the clustering is maintained if the following inequalities
(Equation 1) are satisfied.

c(Cu,V −Cu)
|V −Cu| ≤ α and c(Cv,V −Cv)

|V −Cv| ≤ α

Case iii. If the vertices belong to different clusters
and the addition of the edge satisfies the merging condi-
tion 2c(Cu,Cv)

|V | ≥ α, merge the 2 clusters.
Case iv. If the vertices belong to different clus-

ters and the previous 2 conditions are not met then
the quality of clustering has reduced. Hence, perform
ClusterSubGraph(Cu ∪ Cv) to generate clusters that
maintain clustering quality.

crawling and API calls to the Twitter service, we collected a
sample of tweets from October 1st to December 31st, 2008,
accounting for 2208 hours (see Table 1 for details). The
dataset includes over 710,000 users and over 61.3 million
status updates (“tweets”) of 140 characters or less. Users
can annotate their tweets via the inclusion of hashtags (e.g.,
“#redsox”) to indicate a particular topic. Similarly, users
can include @mentions of the form @�username� within a
tweet to reference another user. While these @mentions can
serve many purposes, the most popular use is as a simple
messaging framework, so that a message posted by user u1

including @�u2� is considered a message from u1 to u2.

Property Total Per hour avg.
Users 711,612 18,713
Total tweets 61,314,203 27,769
Messages (@< u >) 20,394,030 9,236
User pairs 3,756,619 9,310

Table 1: Twitter dataset properties.

3.2 Performance of Crowd Discovery Algorithm

Of the, 61.3 million tweets in the dataset, 20.4 million
contain the @�username� syntax and are considered mes-
sages from one user to another. 3.7 million pairs of users are
connected by these messages.

In the first set of experiments, we investigate the efficiency
and quality of the proposed locality-based clustering ap-
proach for crowd discovery. Since social messaging systems
are large with a high rate of new messages, it is important

1839

(a) Running time comparison. (b) Quality comparison using ratio association.

Figure 1: Performance of crowd discovery algorithm.

for crowd discovery to be efficient; but efficiency must be
balanced with the quality of the discovered crowds. As a
baseline for comparison, we considered the min-cut cluster-
ing algorithm [3] without the locality-based optimizations.
Since min-cut clustering is designed for static graphs, we
took snapshots of the time-evolving communication network
every hour and then ran min-cut clustering over each of these
hourly snapshots, resulting in 2208 total crowd sets.

Running time: In Figure 1(a), we show the running time
comparisons between min-cut clustering and the locality-
based crowd discovery approach (note that we focus on the
first 30 hours for presentational detail; the general trends
hold across the duration). The top plot in Figure 1(a) shows
the growth in users and messages; the middle plot shows the
running time of min-cut clustering; the bottom plot shows
the running time of online clustering algorithm. The first ob-
servation is that the proposed approach is at least 100 times
faster than non-locality optimized approach in all cases, and
upwards of 1,000 times faster in some cases. Next, we ob-
serve the impact the growing number of users and interac-
tions has on the running time of these algorithms. We see
that the running time of the min-cut algorithm is propor-
tional to the increase in users and interactions, while our
algorithm, because of its locality optimizations, has almost
a constant running time. Spatial locality allows our algo-
rithm to cluster a relatively small part of the graph.

Crowd quality: Although the proposed locality-based ap-
proach results in a much faster crowd discovery, there may
be a cost in terms of crowd quality. To gauge this cost, we
measure the quality of the discovered crowds using the ratio-
association value [2], which seeks to maximize the weight

of edges within a cluster: maximize
Pk

i=1
c(Ci,Ci)

|Ci|
. Using

this objective, we measure the ratio-association values for
both min-cut clustering and the proposed approach. In Fig-
ure 1(b), we show the ratio of ratio-association values for
both algorithms versus the proposed approach; the ratio-
association value for local-clustering (online) is indicated
using black bars of height 1. We see that during the ini-

tial intervals, the ratio-association of the min-cut algorithm
is more than that for the locality-based approach, but the
ratio continues to decrease with time. We see significant
improvements by the time we reach the 30th interval. This
shows that as the size of the graph grows the quality of
clusters generated by the locality-based approach increases.

4. CONCLUSION

Toward the goal of detecting hotspots on the real-time
web, we have studied the problem of automatically discov-
ering transient crowds in highly-dynamic social messaging
systems like Twitter. We presented a locality-based cluster-
ing algorithm for a time-evolving communication network
that relies on the inherent spatial locality of transient crowds
to support efficient crowd detection. As part of future work,
we plan to investigate hybrid approaches that build on the
communication-based approach presented here – e.g., by
considering content-based and geographic-based similarity
across users to serve as the basis of crowd formation.

5. REFERENCES
[1] A website that maintains statistical information about

tweets. http://popacular.com/gigatweet/.
[2] I. Dhillon, Y. Guan, and B. Kulis. A fast kernel-based

multilevel algorithm for graph clustering. In KDD ’05,
pages 629–634, New York, NY, USA, 2005. ACM.

[3] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis.
Graph clustering and minimum cut trees. Internet
Mathematics, 1(4):385–408, 2004.

[4] R. E. Gomory and T. C. Hu. Multi-terminal network
flows. Journal of the Society for Industrial and Applied
Mathematics, 9(4):551–570, 1961.

[5] B. Saha and P. Mitra. Dynamic algorithm for graph
clustering using minimum cut tree. In ICDMW ’06,
pages 667–671, Washington, DC, USA, 2006. IEEE
Computer Society.

[6] S. Van Dongen. Graph clustering via a discrete
uncoupling process. SIAM J. Matrix Anal. Appl.,
30(1):121–141, 2008.

1840

