
Transient Crowd Discovery on the Real-Time Social Web∗

Krishna Y. Kamath
Texas A&M University

College Station, TX 77843
kykamath@cs.tamu.edu

James Caverlee
Texas A&M University

College Station, TX 77843
caverlee@cse.tamu.edu

ABSTRACT
In this paper, we study the problem of automatically dis-
covering and tracking transient crowds in highly-dynamic
social messaging systems like Twitter and Facebook. Unlike
the more static and long-lived group-based membership of-
fered on many social networks (e.g., fan of the LA Lakers),
a transient crowd is a short-lived ad-hoc collection of users,
representing a “hotspot” on the real-time web. Successful
detection of these hotspots can positively impact related re-
search directions in online event detection, content person-
alization, social information discovery, etc. Concretely, we
propose to model crowd formation and dispersion through
a message-based communication clustering approach over
time-evolving graphs that captures the natural conversa-
tional nature of social messaging systems. Two of the salient
features of the proposed approach are (i) an efficient locality-
based clustering approach for identifying crowds of users in
near real-time compared to more heavyweight static cluster-
ing algorithms; and (ii) a novel crowd tracking and evolution
approach for linking crowds across time periods. We find
that the locality-based clustering approach results in em-
pirically high-quality clusters relative to static graph clus-
tering techniques at a fraction of the computational cost.
Based on a three month snapshot of Twitter consisting of
711,612 users and 61.3 million messages, we show how the
proposed approach can successfully identify and track inter-
esting crowds based on the Twitter communication structure
and uncover crowd-based topics of interest.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Information networks

General Terms
Algorithms, Experimentation

∗This paper is an extension of our prior work in [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

Keywords
clustering, social media, community detection, real-time web

1. INTRODUCTION
In much the same way as web search engines provide in-

stant access to the retrospective web of previously crawled
and indexed content, there is growing excitement over a new
generation of applications for monitoring, analyzing, and
distilling information from the prospective web of real-time
content that reflects the current activity of the web’s partici-
pants. While the space of all possible real-time web updates
is large (e.g., small changes to static web pages), there is
growing emphasis on a class of interesting and important
real-time web updates – updates associated with user-based
actions and activities on the social web. The social web is
the fastest growing phenomenon on the web, enabling mil-
lions of users to generate and share knowledge. Example
sites include Facebook, Flickr, and Twitter; similar social
systems are increasingly being adopted by governments and
enterprises interested in exploiting the emergent collective
knowledge (“wisdom of the crowds”) embedded in the activ-
ities and actions of their users.

As a step towards this vision of a prospective web infor-
mation platform, this paper focuses on identifying emerg-
ing “hotspots” on the real-time social web. In general, a
“hotspot” could be defined by the posting and sharing ac-
tions of users in social systems, for example triggered by an
offline event (e.g., Facebook posts and Tweets in response
to a live Presidential debate or a chemical fire at a nearby
refinery) or by an online phenomenon (e.g., reaction to In-
ternet memes, online discussion). Detecting these hotspots
as they arise in real-time is an important and fundamental
building block for enabling new real-time web applications,
applications related to identification and dissemination of
disaster and emergency-related information, among many
other emerging social mining applications.

Towards the goal of identifying online hotspots, we fo-
cus in this paper on identifying crowds of users through
an analysis of their online actions. A single user action –
for example, posting a Tweet mentioning a smoke plume at
a nearby factory – though perhaps interesting itself, does
not convey a strong community or social-based importance
to the user action. In contrast, a flurry of activity asso-
ciated with a “crowd” is a strong indicator of an emergent
online phenomenon that may be worth identifying and di-
recting to interested users. Unlike the more static and long-
lived group-based membership offered on many social net-
works (e.g., fan of the LA Lakers), our goal is to support

the discovery of organic and highly-temporal group affili-
ation, which we refer to as transient crowds. A transient
crowd is a potentially short-lived ad-hoc collection of users
bound together by some common thread. For example, tran-
sient crowds could be viewed through several overlapping
perspectives: (i) communication-based, reflecting groups of
users who are actively messaging each other, e.g., users co-
ordinating a meeting; (ii) location-based, reflecting groups
of users who are geographically bounded, e.g., users posting
messages from Houston, Texas; and (iii) interest-based, re-
flecting groups of users who share a common interest, e.g.,
users posting messages about a presidential debate.

Transient crowds are dynamically formed and potentially
short-lived. Hence, it is a major challenge to efficiently iden-
tify coherent crowds across a potentially vast collection of
non-obviously connected user actions. Considering Twitter
alone, there are potentially 100s of millions of active users
inserting new messages into the system at a high-rate. How
can we identify and extract real-time crowds efficiently with-
out sacrificing crowd quality? In addition to identifying a
particular crowd at a point-in-time, how can we efficiently
and successfully track the crowd over time as users join,
crowds merge, and crowds disperse?

We propose to model crowd formation and dispersion through
a message-based communication clustering approach over
time-evolving graphs. Two of the salient features of the
proposed approach are (i) an efficient locality-based cluster-
ing approach for identifying crowds of users, and (ii) a novel
crowd tracking and evolution approach for linking crowds
across time periods. The efficient locality-based clustering
is developed on the notions that (i) changes in a small region
of a graph should not affect the entire graph; and (ii) that
edge weights should reflect temporal and interest locality
(e.g., decaying based on communication recency).

2. PROBLEM STATEMENT
We are interested in exploring short-lived group forma-

tions on large and growing social messaging systems like
Twitter and Facebook. As we have noted, users on these so-
cial networks may be grouped along a number of dimensions
including content-based (or thematic interest), geographic-
based, communication-based, and so on. In this paper, we
focus on the specific challenge of uncovering and tracking
groups of users – what we refer to as transient crowds –
according to their communication patterns. Compared to
previous works [9, 11] that seek to do fast clustering on an
as-needed basis, our approach is to detect and track crowds
in real-time (e.g., every minute). This requires both a single-
shot fast clustering and cluster evolution to track changes
and trends. In addition these previous works use offline al-
gorithms which are not suitable for our requirements.

Historically, direct communication between people has been
mostly unobservable or unavailable for large-scale web min-
ing. For example, private email and instant messages be-
tween two users are typically not made available for natural
reasons. But with the rise of new social messaging systems
like Twitter and Facebook, communications between users
can be monitored. For example, Twitter supports the public
messaging of users through the inclusion of @〈username〉 in
a Twitter post (a “tweet”). So a tweet from the user nod
can be addressed to the user kykamath like so: “@kykamath
What do you think about the new iPad?”. This type of ob-
servable communication is on the rise and a significant por-

tion of all messages posted on Twitter, with estimates plac-
ing the percent of all tweets containing the @〈username〉
at 30% (or about 7 million observable communications per
day) [1]. Similar messaging functionality has recently been
adopted by Facebook. Based on these observable commu-
nication patterns, we study how to efficiently discover and
track transient crowds. We now give some definitions before
framing the problem.

Definition (Time-Evolving Communication Network)
A time-evolving communication network is an undirected
graph Gt(V, E) graph with |V | = n vertices and |E| = m
edges, where each vertex corresponds to a user in the social
messaging system and an edge corresponds to a communi-
cation between two users. The weight of an edge between
vertices u and v at time t is represented by wt(u, v).

The communication network is time evolving because the
relationship between users – as indicated by wt(u, v) –
changes over time. In practice, the edge weights in a time-
evolving communication network could be based on the ge-
ographical distance between users, the “semantic” closeness
based on an analysis of the content of their messages, or
other context-sensitive factors. For concreteness, in this
study we focus on purely communication-based properties
(the recency and number of messages between the users) for
determining the edge weights in the time-evolving commu-
nication network.

Definition (Transient Crowd): A transient crowd C ∈
Kt is a time-sensitive collection of users who form a cluster
in Gt, where Kt is the set of all transient crowds in Gt.
A transient crowd represents a collection of users who are
actively communicating with each other at time t.

Based on these definitions, we can now break our problem
into two parts:

(i) Crowd Discovery Problem: Discover the set of transient
crowdsKt that exist in the communication networkGt(V, E)
at time t; and

(ii) Crowd Tracking Problem: Track the evolution of tran-
sient crowds discovered across time periods as they grow,
merge, split, and disperse.

2.1 Example
To illustrate the problem of crowd discovery, consider the

simple example in Figure 1. At time t=1, users A and B
send messages to each other, as do users C and D.1 The as-
sociated communication graph shows an edge between the
two pairs, where for simplicity the edge is annotated with
the number of messages between the users (2, in both cases).
Further, suppose we identify crowds based purely on graph
connectivity. So for time t=1, we see there are two crowds
discovered {A,B} and {C,D}. For each crowd, we can char-
acterize the semantics of their communication with simple
keywords extracted from the content of the tweets: (“oil”,
“gulf”) and (“walcott”, “capello”). At time t=2, the commu-
nication graph is updated with a new edge (connecting User
A and User C), and the existing edges are decayed by one
(again, a simplifying assumption for the purposes of this

1For simplicity, the example discretizes time so that all mes-
sages between users occur in steps. In practice, the proposed
algorithm relaxes this assumption and can handle arbitrary
message sending times.

t Twitter @ messages Communication
Graph

Crowds
Discovered

Crowd Analysis

1 A: @B BP modifies Gulf oil
cleanup plan.
B: @A Feds Open Criminal Probe
on Oil.
C: @D Fabio Capello's England.
D: @C Walcott dropped.

2 A: @B Marine Life dying in Gulf
Coast.
A: @C Gulf Oil Spill: Diamond
saw breaks.
C: @A Oil spill protest tomorrow

3 A: @B 10 things to hate about
BP.
B: @C Huge environmental
impact.
C: @B Protesting oil spill at NY.

4 A: @B Top kill fails.
B: @A BP doesn't care.

5 A: @B Hope things get better
over weekend.
B: @A Deep water will take down
BP.

A B

DC 2

2

A B

DC 1

3

2

A B

DC 0

4

1 2

A B

DC 0

6

0 1

A B

DC 0

8

0 0

A B

C D

A B

C D

A B
C

D

A B
C

D

A B

C D

- bp, gulf, oil, fed

- walcott, capello

- gulf, oil,
spill

- bp, protest,
environment

- bp, carem
top, kill

- deep, water,
bp, weekend

Figure 1: Example of crowd discovery and tracking in Twitter.

example). A single crowd is discovered since all users are
connected via edges with non-zero edge weights. At time
t=3, User D leaves the main crowd since no messages to
or from User D have been observed since time t=1. This
process continues until time t=5 when User C also leaves
the main crowd due to inactivity. Note that crowds are dis-
covered from communication graph only and not from the
content of the messages. As an example of crowd tracking,
we can track the evolution of the yellow crowd across time
periods, observing the changes it goes through as it grows
in size from t=1 to t=2 and then reduces to two users by
t=5.

2.2 Challenges
Based on the simple example above, we could imagine di-

rectly scaling the basic transient crowd discovery and track-
ing approach to systems like Facebook and Twitter. For
practical crowd discovery and tracking in a large time-evolving
communication network, however, we face four key chal-
lenges:

• First, systems like Facebook and Twitter are extremely
large (on the order of 100s of millions of unique users),
placing huge demands on the computational cost of tra-
ditional community detection approaches (which can be
O(n3) in the number of users [5]).

• Second, these services support a high-rate of edge addi-
tion (new messages) so the discovered crowds may be-
come stale quickly, resulting in the need to re-identify all
crowds at regular intervals (again, incurring the high cost
of community detection). The bursty nature of user com-
munication demands a crowd discovery approach that can
capture these highly-temporal based clusters.

• Third, the strength of association between two users may
depend on many factors (e.g., recency of communication),
meaning that a crowd discovery approach based on graph
clustering should carefully consider edge weights. With no
decay at all (meaning that edges are only inserted into the
network but never removed), all users will tend towards
a single trivial large crowd. Conversely, overly aggressive
edge decay may inhibit any crowd formation at all (since
edges between users may be removed nearly as soon as
they are added).

• Fourth, crowds may evolve at different rates, with some
evolving over several minutes, while others taking several
days. Since crowds are inherently ad-hoc (without unique
community identifiers – e.g., Fans of LA Lakers), the for-
mation, growth and dispersal of crowds must be carefully
managed for meaningful crowd analysis.

3. CROWD DISCOVERY AND TRACKING
With these challenges in mind, we propose to discover and

track transient crowds through a communication based clus-
tering approach over time-evolving graphs that captures the
natural conversational nature of social messaging systems.
Two of the salient features of the proposed approach are (i)
an efficient locality-based clustering approach for identifying
crowds of users in near real-time compared to more heavy-
weight static clustering algorithms; and (ii) a novel crowd
tracking and evolution approach for linking crowds across
time periods. In the rest of this section we tackle each of
these key areas in turn before evaluating the proposed ap-
proach in Section 4 (Experiments).

3.1 Locality in Social Messaging Systems
To support transient crowd discovery in Twitter-like ser-

vices with 100s of millions of participants, we propose to
leverage the inherent locality in social messaging systems.
Concretely, we identify two types of locality that are evident
in Twitter-like messaging systems: (i) temporal locality and
(ii) spatial locality.

Temporal Locality: Transient crowds are intuitively short-
lived, since they correspond to actively communicating groups
of users. Hence, the composition of a crowd at a point-in-
time should be impacted by recent messages as opposed to
older messages. As more users interact with the crowd, the
crowd should grow reflecting this temporal locality and then
shrink as users in the crowd become inactive (that is, their
last communication with the crowd becomes more distant in
time).

Spatial Locality: Intuitively, transient crowds are made
up of a very small percentage of users compared to the en-
tire population of the social network. Hence, new messages
(corresponding to the addition of edges to the communi-
cation network) should have only a local influence on the
crowds that exist at any given time. That is, changes in a
small region of a graph should not affect the entire graph.
In a dataset of 61 million Twitter messages described in Sec-
tion 4, we have confirmed the existence of this spatial locality
by finding that only about 1% of users are within two hops,
meaning that an edge insertion has only a local effect.

Hence, we can take advantage of both, local changes to the
overall communication network (spatial locality) and recent
changes to the network (temporal locality), for supporting
efficient transient crowd discovery. We next describe how we
can use these locality properties in our proposed solution.

3.2 Modeling Temporal Locality
Temporal locality suggests that transient crowds should

be composed of users who have communicated with the
crowd recently, and that older messages should be treated
less significantly. In the motivating example in Figure 1, we
implemented temporal locality by reducing the edge weight

by 1 at each time step if no messages are exchanged in a par-
ticular time interval, and increasing the edge weight by 1 if
messages were exchanged. In the following discussion we ex-
plore some more refined approaches for exploiting temporal
locality for transient crowd discovery.

Recall that the time-evolving communication networkGt(V,E)
has edge weights between vertices u and v at time t repre-
sented by wt(u, v). Suppose that the network also stores
the latest time any two users communicated τ(u, v) and
that we have access to the current time in the system Tnow.

Fixed window: One approach to model temporal locality
is to consider only edges within a fixed time-window β. That
is, consider only edges (u, v) such that Tnow − τ(u, v) < β.
In this case, messages sent more than β time units earlier are
completely disregarded by the crowd discovery system. A
common problem with such a windowing approach is the loss
of historical information. In our case this means a possibility
that we will miss some significant edges, just because a user
didn’t communicate in the last β time units. For example,
consider 2 users who have constantly exchanged messages
over a year, except for the last 1 week. If β is set to 1
week, then the relationship between these 2 users is lost.
Hence, using this approach might result in the discovery of
imprecise crowds.

Exponential Decay: Alternatively, we propose an edge-
weight decay function that gradually fades the impact of
older messages relative to newer ones. Concretely, we pro-
pose an exponentially decaying impact function based on
a decaying coefficient ξ for controlling the rate of decay.
The value of ξ determines the type of crowds we identify.
Crowds forming slowly can be identified with lower values
of ξ while higher value of ξ identifies only crowds forming
quickly. Hence, this parameter can be tuned according to
the particular application requirements. Since we are in-
terested in transient crowds we will set the values of ξ to
relatively higher values.

For edges (u, v) | w(u, v) > 0 we update the new edge
weight, conditioned on message exchange, at time t as:

Messages not exchanged:

wt(u, v) = wt−1(u, v)− log(Tnow − τ(u, v)) × ξ

Messages exchanged:

wt(u, v) = wt−1(u, v) + 1− log(Tnow − τ(u, v)) × ξ

To illustrate the impact of this exponential fading, a typ-
ical communication graph between two users is shown in
Figure 2. The upper plot shows the number of messages
exchanged between two users and the bottom plots shows
the exponentially decayed edge weights. The middle plot
shows the effect of exponential decaying with ξ = 0.3 and
the bottom plot with ξ = 1.0. As expected, we observe that
edge weights fall much faster in the bottom plot than in the
middle plot.

3.3 Exploiting Spatial Locality
Given the temporal locality-inspired optimization of tran-

sient crowd discovery, we now turn to spatial locality. To
take advantage of spatial locality, we propose to augment a
traditional (expensive) graph clustering algorithm by selec-
tively applying the algorithm to small portions of the entire

Figure 2: Changes to edge weights with Exponential Decay.

communication network, thereby saving the computational
cost of running the algorithm over the entire large network.

Let Cti represents the ith crowd in Kt. Users are assigned
to one and only one crowd, i.e., Cti ∩ Ctj = φ, ∀ Cti, Ctj ∈
Kt. To discover Kt, we could apply one of a number of
graph clustering algorithms, including MCL [12], multilevel
graph clustering [4], etc. For concreteness in this paper, we
consider min-cut clustering [5, 7], a popular graph cluster-
ing algorithm that has shown good success across real-world
datasets like web pages, citation networks, etc. While the
following discussion focuses on min-cut clustering (in the in-
terest of providing a baseline for experimental comparison
of transient crowd discovery), the general locality principles
discussed in this section could be applied to other clustering
algorithms.

3.3.1 Preliminaries
To begin our development of locality-based clustering, we

first present some preliminaries to describe min-cut cluster-
ing.

Minimum cut: The minimum cut of a graph G with re-
spect to vertices s and t, where s ∈ S, t ∈ T , is defined as
partition of V into S and T such that, the total weight of
edges connecting the partitions is minimum. This is repre-
sented as c(S, T). For an undirected graph G we can define
a weighted tree TG called the minimum-cut tree [7]. We can
determine c(S, T) by analyzing the path from s to t in TG,
where the value of c(S, T) is equal to the smallest edge on
this path.

Min-cut clustering: The min-cut clustering algorithm [5]
clusters a graph G first by adding an artificial sink t. All of
the vertices of G are connected to the artificial sink with an
edge capacity of α, to form a modified graph G′, where α is
a parameter guiding the quality guarantees of the resulting
clusters. The minimum-cut tree T ′ for G′ is then calculated.
The connected components of T ′ obtained after removing
the artificial sink t are clusters in G. Min-cut clustering
relies on the special parameter α to ensure the quality of
the clusters generated, where:

c(S, V − S)

|V − S| ≤ α ≤ c(P,Q)

min(|P |, |Q|) (1)

with, P∩Q = φ and P∪Q = S. By tuning this α parameter,
the number and size of the resulting clusters can be varied
(from one large cluster with all nodes to a trivial clustering
consisting of n singleton nodes).

3.3.2 Locality-Based Clustering
Of course, we could directly apply the min-cut clustering

algorithm to the large time-evolving communication network
Gt directly. The output would be a set of clusters Kt which
we could take to be transient crowds, however, at a consider-
able expense. Coupled with the need to re-compute clusters
as the network evolves, straightforward application of a tra-
ditional graph clustering approach is infeasible for efficient
transient crowd discovery.

Towards exploiting spatial locality for efficient crowd dis-
covery, we must address two issues: (i) The application
of min-cut clustering to a particular subgraph of the en-
tire communication network; and (ii) The determination of
which subgraphs of the communication network to select for
clustering.

Subgraph clustering: The first challenge is to perform
local clustering, given an identified region of the commu-
nication network (corresponding to some locally impacted
portion of the network). By clustering a local region of the
communication network we can begin to reduce the expense
of clustering the entire network.

Given a subgraph S (the part of the communication net-
work impacted by edge addition) to cluster, the algorithm
first contracts Gt to G′t. As shown Algorithm 1, this ap-
proach then creates a new graph G′′t by adding an artificial
sink ws to G′t and connecting all the vertices of S to t with
edges of capacity α and all the vertices in (V ′−S) with edges
of capacity of α|V − S| as in [10]. It then determines the
minimum-cut tree T ′′t for G′′t . The connected components
obtained after removing ws from T ′′t are the new clusters
(which correspond to transient crowds). In this way, only
a small portion of the communication network is impacted,
leading to more efficient clustering that clustering the entire
network.

Algorithm 1 ClusterSubGraph(S)

1. Contract Gt: Reduce Gt to G′t by replacing vertices
V − S with a new vertex x. All the resulting loops are
deleted and parallel edges are replaced with a single edge
with weight equal to the sum of the edges.
2. Expand G′t: Construct a new graph G′′t by adding
vertex ws to G′t(V

′, E′). Connect ws to v,∀v ∈ S with
edge capacity of α and ws to v′,∀v′ ∈ (V ′ − S) with edge
capacity of α|V − S|.
3. Minimum-cut tree: Determine minimum-cut tree
T ′′t for G′′t . The connected components obtained in T ′′t
after removing vertices ws and x from it are the clusters
in S.

Subgraph selection: The second challenge is to deter-
mine which subgraphs are to be selected for clustering, i.e.
how do we select S in Algorithm 1? Selecting too many
subgraphs for re-clustering may result in expensive compu-
tation, whereas selecting too few may result in poor crowd
quality. Following [10], we adopt an approach triggered on
each edge insertion to identify subgraphs that need to be
clustered.

Depending on the position where an edge is inserted and
the effect of edge addition on the quality of clustering there
are four ways to select clusters for local clustering. The
first case is when an edge is added within an existing cluster
Cu. In this case there is a probability that this addition
might have resulted in subclusters within Cu, that improve
clustering quality. Hence, only Cu is selected for clustering
(Case i). An edge can also be added between 2 clusters.
In this case, if the quality of clustering is maintained in
spite of this edge addition, then re-clustering is not required
(Case ii). Otherwise, if the quality of clustering is reduced,
then we select both clusters for re-clustering (Case iv). If
the addition of an edge between 2 clusters results in satisfy-
ing the condition for cluster merging, then the 2 clusters are
merged (Case iii). The pseudocode for subgraph selection
is given in Step 2 of Algorithm 2.

The proof of correctness of these cluster selection meth-
ods is given in [10]. We empirically validate the clustering
quality in Section 4.

Algorithm 2 Locality Clustering Algorithm

For every new edge (u, v) added to the graph, perform the
following 3 steps.
1. Initialization: If the added edge has vertices that
have not been observed before add them to vertex set
V . Create singleton clusters for the new vertices and add
them to cluster set K.
2. Clustering: Let u, v belong to clusters Cu and Cv

respectively. For every edge (internal and boundary) in
Cu and Cv decay the edge weights as mentioned in Sec-
tion 3.2. Now depending on the conditions that match
perform the corresponding clustering operations:

Case i. If the vertices belong to same cluster then
updating the edge weights might have resulted in forma-
tion of clusters within this cluster. Check for new clusters
using ClusterSubGraph(Cu).

Case ii. If the vertices belong to different clusters
and the addition of the edge does not reduce the qual-
ity of clustering, then perform no action. The quality of
the clustering is maintained if the following inequalities
(Equation 1) are satisfied.

c(Cu,V−Cu)
|V−Cu| ≤ α and c(Cv,V−Cv)

|V−Cv| ≤ α
Case iii. If the vertices belong to different clusters

and the addition of the edge satisfies the merging condi-

tion 2c(Cu,Cv)
|V | ≥ α, merge the 2 clusters.

Case iv. If the vertices belong to different clus-
ters and the previous 2 conditions are not met then
the quality of clustering has reduced. Hence, perform
ClusterSubGraph(Cu ∪ Cv) to generate clusters that
maintain clustering quality.

Time Complexity Analysis: The algorithm to cluster
subgraphs uses the relabel-to-front approach of the push-
relabel algorithm [6] to calculate the minimum-cut tree. It
has a time complexity of O(l3), where l is the number of ver-

tices in the minimum-cut tree. Let k = max
|Kt|
i=1 (|Cti|), the

size of the largest crowd in Kt. In edge addition algorithm
when both the vertices of the edge belong to the same crowd
we decay O(k2) edges and re-cluster O(k) vertices. In this
case the time complexity is O(k3). In case where the qual-
ity of crowds is maintained on addition of the edge, the time

complexity is O(2k2) for damping the edges. During the
merge operation, we dampen O(2k2) edges and re-cluster
O(2k + 1) vertices, which results in a time complexity of
O(k3). Hence, the time complexity of the algorithm on an
edge addition is O(k3), as compared to the time complexity
O(n3) for the original min-cut clustering algorithm in [5].

To summarize, in this section we have described how we
can use the spatial and temporal locality observed in so-
cial messaging systems to design an efficient clustering algo-
rithm.

3.4 Crowd Tracking
Finally, we turn to the second of two key challenges for

transient crowd discovery and tracking – how to track crowds
over time as users join, crowds merge, and crowds disperse.
For example, when we discover a new crowd that is dis-
cussing an upcoming event (say the World Cup), we need a
method to track the users participating in this crowd in con-
sequent intervals. This would give us an ability to analyze
crowd dynamics leading up to and after the event.

Recently, there has been some work analyzing communi-
ties across times. In [3], the authors look at communities on
large social networks like LiveJournal and MySpace. Since
the communities are explicitly defined in these networks, the
task of determining evolution of graph is trivial. In [2] the
authors observe changes clusters undergo between time in-
tervals and consider the changes to be events.

Crowd tracking would be straightforward if each crowd
were associated with a unique community identifier (e.g.,
Fans of LA Lakers). Facebook and Twitter have adopted
methods for group affiliation like fanclubs and lists, but these
longer-lived affiliations are not available nor appropriate for
short-lived transient crowds. Since crowds are inherently ad-
hoc we define in this section the problem of crowd tracking
and present a graph-based approach to solve it.

Crowd Tracking Graphs: A crowd tracking graph Gc

is constructed using the crowds obtained at different time
intervals. This graph helps us understand the changes that
take place in these crowds between time intervals. It is a
directed graph with crowds as vertices and the direction of
the edge denoting the parent-child relationship. Node colors
are used to indicate the state of crowd evolution. A green
node indicates that the crowd has been discovered for the
first time and a red node indicates dispersal of the crowd.
Intermittent crowds are shown in blue color. To track the
evolution of a crowd we start at the green node and follow
the edges until we reach the red node. An example of a
crowd tracking graph is shown in Figure 3(a). The graph
also shows examples of merging and splitting of crowds.

Transient Crowd Tracking Problem: Given a time-evolving
communication network Gt(V, E) and a set of transient
crowds Kt identified at every time interval t, construct a
Crowd Tracking Graph Gc.

We propose an algorithm to construct a crowd tracking
graph. The algorithm takes the crowd set for the sth interval
Ks and the crowd set for previous interval Ks−1 as input.
For every crowd Csi ∈ Ks, it determines the parent crowd
in Ks−1. It then adds a directed edge from the parent to
the child crowd. The pseudocode for this algorithm is given
in Algorithm 3.

Examples of how parent crowds are selected is shown in
Figure 3(b). (I) shows two crowds merging. Here, the parent

Algorithm 3 Crowd Tracking Algorithm

Let Ks be the crowd set for the current interval and Ks−1

the previous.
for Every crowd Csi ∈ Ks do

if Csi is a newly discovered crowd then
Create a green node in Gc.

else
Get the parent crowd Cs−1j ∈ Ks−1 with max-
imum common users with Csi. If there is more
than one crowd with same number of common
users, select the older crowd.
Create a new blue node and add a directed edge
from the parent crowd in Ks−1 to Csi.

end if
end for
for Every crowd Cs−1j ∈ Ks−1 that does not have a child
node do

Change the color of Cs−1j to red from blue.
end for

of the crowd in ts+1 is the crowd in ts that contributed the
maximum nodes to the crowd in ts+1. (II) shows a single
crowd in ts being split into two crowds in ts+1. The parent
of the two crowds in ts+1 is obtained directly. (III) shows a
case where three crowds in ts contribute to three crowds in
ts+1. Though crowd A and B contribute two nodes each to
D, B is designated as the parent of D since B is older than
A.

4. EXPERIMENTS AND RESULTS
In this section we present the results of four sets of experi-

ments: (i) we first explore the impact of locality-based crowd
discovery compared to the static graph clustering approach
without the locality optimizations; (ii) then we investigate
the impact of the tunable edge decay parameter; (iii) we then
examine the features of the discovered crowds, including size
and lifespan; and (iv) we illustrate some crowd-based trends
that differ from trends aggregated from individual users.

4.1 Twitter Dataset
To study crowd detection in a real-world setting, we focus

on the Twitter micro-blogging service. Through a mix of
crawling and API calls to the Twitter service, we collected a
sample of tweets from October 1st to December 31st, 2008,
accounting for 2208 hours (see Table 1 for details). The
dataset includes over 710,000 users and over 61.3 million
status updates (“tweets”) of 140 characters or less. Users
can annotate their tweets via the inclusion of hashtags (e.g.,
“#redsox”) to indicate a particular topic. Similarly, users
can include @mentions of the form @〈username〉 within a
tweet to reference another user. While these @mentions can
serve many purposes, the most popular use is as a simple
messaging framework, so that a message posted by user u1

including @〈u2〉 is considered a message from u1 to u2.

Property Total Per hour avg.
Users 711,612 18,713
Total tweets 61,314,203 27,769
Messages (@< u >) 20,394,030 9,236
User pairs 3,756,619 9,310

Table 1: Twitter dataset properties.

Time t1 t2 t3 t4 t5 t6

(a) Crowd tracking graph. The green nodes rep-
resent start of a crowd and the red node shows the
dispersing of the crowd.

(I)

(II)

(III)

t s t s+1

t s+1

t s+1

t s

t s

A
Age = 3

B
Age = 6

C
Age = 5

D
Age = 7

(b) Examples of crowd modification events. Ar-
rows indicate crowds in ts that contribute to
crowds in ts+1. Color of the crowd in ts+1 in-
dicates its parent in ts.

Figure 3: Crowd tracking.

Figure 4: Users, user pairs and messages in Oct-Dec, 2008.

Of the, 61.3 million tweets in the dataset, 20.4 million
contain the @〈username〉 syntax and are considered mes-
sages from one user to another. 3.7 million pairs of users
are connected by these messages. The hourly distribution
of tweeting users, user pairs, and messages sent is shown in
Figure 4. All are strongly correlated, following a clear daily
and weekly patterns.

4.2 Performance of Crowd Discovery Algorithm
In the first set of experiments, we investigate the efficiency

and quality of the proposed locality-based clustering ap-
proach for crowd discovery. Since social messaging systems
are large with a high rate of new messages, it is important
for crowd discovery to be efficient; but efficiency must be
balanced with the quality of the discovered crowds. As a
baseline for comparison, we considered the min-cut cluster-
ing algorithm [5] without the locality-based optimizations.
Since min-cut clustering is designed for static graphs, we
took snapshots of the time-evolving communication network
every hour and then ran min-cut clustering over each of these
hourly snapshots, resulting in 2208 total crowd sets.

Running time: In Figure 5(a), we show the running time
comparisons between min-cut clustering and the locality-
based crowd discovery approach (note that we focus on the
first 30 hours for presentational detail; the general trends
hold across the duration). The top plot in Figure 5(a) shows
the growth in users and messages; the middle plot shows the
running time of min-cut clustering; the bottom plot shows
the running time of online clustering algorithm. The first ob-
servation is that the proposed approach is at least 100 times
faster than non-locality optimized approach in all cases, and
upwards of 1,000 times faster in some cases. Next, we ob-
serve the impact the growing number of users and interac-
tions has on the running time of these algorithms. We see
that the running time of the min-cut algorithm is propor-
tional to the increase in users and interactions, while our
algorithm, because of its locality optimizations, has almost
a constant running time. Spatial locality allows our algo-
rithm to cluster a relatively small part of the graph and
temporal locality reduces the number of edges by removing
old edges.

Crowd quality: Although the proposed locality-based ap-
proach results in a much faster crowd discovery, there may
be a cost in terms of crowd quality. To gauge this cost, we
measure the quality of the discovered crowds using the ratio-
association value [4], which seeks to maximize the weight

of edges within a cluster: maximize
∑k

i=1
c(Ci,Ci)
|Ci|

. Using

this objective, we measure the ratio-association values for
both min-cut clustering and the proposed approach. In Fig-
ure 5(b), we show the ratio of ratio-association values for
both algorithms versus the proposed approach; the ratio-
association value for local-clustering (online) is indicated
using black bars of height 1. We see that during the ini-
tial intervals, the ratio-association of the min-cut algorithm
is more than that for the locality-based approach, but the
ratio continues to decrease with time. We see significant
improvements by the time we reach the 30th interval. This
shows that as the size of the graph grows the quality of
clusters generated by the locality-based approach increases.

Empirically, we find that the locality-based approach sup-
ports efficient crowd discovery while maintaining crowds of

(a) Running time comparison. (b) Quality comparison using ratio association.

Figure 5: Performance of crowd discovery algorithm.

relatively high quality (within 50% of the ideal case using
static graph clustering).

4.3 Varying the Edge-weight Decay Coefficient
In the second set of experiments, we analyze the perfor-

mance of the algorithm as the decay coefficient is modified,
from 0.5 to 1.0 to 1.5. The decay coefficient is an important
tunable parameter that determines the rate at which crowds
disperse. We first show the impact varying this parameter
has on the number of crowds discovered and the size of these
crowds. We then investigate the impact of this parameter on
the speed of crowd discovery and the quality of the crowds
discovered.

Impact on number of crowds discovered and crowd
sizes: The effect of varying decay co-efficient on crowd size
and count is shown in Figure 6(a). We find that the number
of crowds discovered for coefficient of 0.5 is more than the
ones discovered for 1.0 and 1.5. In the case of larger coeffi-
cient values the crowds disperse quickly and hence we find
fewer crowds. Coefficients 1.0 and 1.5 discover almost the
same number of crowds. This might be because the crowds
that are discovered at 1.0 stay together even at 1.5. It is
possible that they disperse at higher co-efficients. We also
observe larger crowd sizes at lower coefficient values as the
crowds disperse slowly.

Impact on ratio association values: The effect on qual-
ity of crowds discovered at different decay coefficient values
is shown in Figure 6(b). To observe the quality of crowds
discovered we use ratio association, as defined before. We
observe that the best crowds are obtained when the decay-
ing coefficient is 1.0. Hence, for the rest of the experiments
we set the coefficient to 1.0.

Impact on crowd discovery time: We observe that the
running time of the algorithm is not dependent on the coef-
ficient (see Figure 6(c)). This is an important result because
we can now use our algorithm to observe crowds at degrees
of granularity by changing the coefficient without affecting
the running time performance of the algorithm.

4.4 Transient Crowd Analysis
In the third set of experiments, we explore the charac-

teristics of the discovered crowds using the proposed crowd

Figure 7: Crowds at each time interval.

discovery and tracking approach. We identify topics for a
particular crowd (akin to the “Crowd Analysis” column in
the example in Figure 1) using a simple approach in which
we characterize the topic of a crowd by extracting the nouns
from the messages (tweets) exchanged by a crowd.

Time-dependent crowding patterns: We first consider
the number of crowds discovered in each time interval. This
knowledge can yield insights into crowding patterns in social
networks. Figure 7 shows the distribution of crowds during
a particular week. Like the user and message frequency in
Figure 4, we observe crowds following a daily pattern. But
unlike the previous case, where we saw high and uniform
usage throughout afternoon and evening, we observe the
largest number of crowds forming in the evening. We are
interested to explore this tension between crowding behav-
ior and overall Twitter usage in our continuing work.

Crowd lifespan: Next, we consider the lifespan of crowds.
The lifespan for a crowd can be obtained from the crowd
tracking graph discussed in Section 3.4. The length for
which a crowd lasts is an indicator of its activeness. For
example, a crowd that is constantly communicating lives for
a longer time than an inactive crowd which disperses. We il-

(a) Crowd count and size. (b) Quality of clustering. (c) Running time of the clustering algo-
rithm.

Figure 6: Effect of varying edge-weight decay co-efficient

Figure 8: Examples of the crowds discovered in the dataset.

lustrate some of the discovered crowds and their lifespans in
Figure 8, with an annotation next to the crowd peak showing
the topic of discussion. We see a crowd (shown in black) dis-
cussing Sarah Palin and the Vice-Presidential debate from
the 40th hour to 80th hour that peaks around the time of
the actual debate. We observe that crowds that talk about
general everyday things have a greater lifespan than crowds
discussing specific events. For example in Figure 8, a crowd
(annotated with thank, whats, wow) discussing everyday
things lives through the entire week, while, during the same
period we observe several event-specific crowds, like crowds
discussing the Red Sox, Sarah Palin, and Girl’s Night Out
(gno) forming and dispersing. These event-specific crowds
start forming just before the event and die a few intervals
after the completion of that event. This distinction between
the crowds discovered clearly indicates two types of Twitter
usage: first, it is used as a platform to discuss and debate
specific events, and second, it as also used a means of every-
day communication.

4.5 Crowd-based vs. User-based Topics
In the final set of experiments, we compare the topics that

interest crowds versus topics that are discovered through the
(non-crowd) aggregation of tweets from individual users.

Hashtags vs. Crowd topics: Twitter supports the in-
clusion of meta-data in tweets through the use of hash-

Figure 9: Topic evolution in a crowd over time.

tags (e.g., “#redsox”). We first aggregated all of the hash-
tags in our dataset to see what topics were of most inter-
est. These top hashtags are shown in Table 2. Most of
the topics determined using hashtags are related to spe-
cific events, like debate-related hashtags, conference-related
hashtags (wct08, ldsconf, wjs08) etc. This individual-based
aggregation is similar to how Twitter’s trending topics works
(see http://search.twitter.com/).

In Table 2, we also show the topics discovered from our
simple noun-based crowd analysis. We see that the crowd-

Rank Hashtags Crowd top-
ics

1 vpdebate twitter
2 current debate
3 redsox palin
4 vmb money
5 ldsconf video
6 debate08 kids
7 palin obama
8 wcto08 school
9 wjs08 mccain
10 eleicos office

Table 2: Top hashtags and topics observed for the week.

(a) Comparison for ldsconf (b) Comparison between redsox and palin

Figure 10: Comparison between hashtags and crowd topics.

based topics are more varied and less event-specific, like
money, kids, and school. Some topics like ldsconf (cor-
responding to the LDS Semi-annual General Conference)
are hashtagged often but are part of no crowds (See Fig-
ure 10(a)). Similar results hold for the conference tags wcto08,
wjs08, indicating lots of individual activity via tweeting about
the conference, but little cohesive communication among
members of a community. Another example of the differ-
ence between hashtags and topics discussed is shown in Fig-
ure 10(b). We see the distribution of the topics palin and
redsox, where the number of hashtags for redsox is signif-
icantly more than the hashtags for palin, but we see that
more crowds discuss palin than redsox.

Topic evolution: Finally, we track the evolution of topics
within a crowd as users join and leave over time. Observing
the changing topics in a crowd can give us a better under-
standing about the interests of a crowd and hence help us
model the crowd better. An example of such a topic evolu-
tion, in a crowd discussing vice-presidential debate, is shown
in Figure 9. The crowd at the beginning discusses something
generic and then starts discussing the Vice-Presidential de-
bate as it occurs (intervals 50-54). The crowd has maximum
users during the actual debate and begins to lose users on
completion of the debate. As we move away from the debate
we see the crowd discussing other topics before dispersing.

5. CONCLUSION
In this paper, we have studied the problem of automat-

ically discovering and tracking transient crowds in highly-
dynamic social messaging systems like Twitter. We pre-
sented a locality-based clustering algorithm for a time-evolving
communication network that uses two characteristics of tran-
sient crowds – temporal and spatial locality – to support
efficient crowd detection. We showed how crowds at dif-
ferent granularity can be discovered by changing edge de-
cay coefficient. We then analyzed these crowds to discover
crowd-based topics of discussion, which are different from
those identified using hashtags. Finally, with an example we
showed how we can track topic evolution in a crowd. As part
of future work, we plan to investigate hybrid graph cluster-

ing approaches that build on the communication-based ap-
proach presented here – e.g., by considering content-based
and geographic-based similarity across users.

6. ACKNOWLEDGMENTS
This work was supported in part by a DARPA Young Fac-

ulty Award and by a Google Research Award. Any opinions,
findings and conclusions or recommendations expressed in
this material are the author(s) and do not necessarily reflect
those of the sponsors.

7. REFERENCES
[1] A website that maintains statistical information about tweets.

http://popacular.com/gigatweet/.

[2] S. Asur, S. Parthasarathy, and D. Ucar. An event-based
framework for characterizing the evolutionary behavior of
interaction graphs. In KDD ’07, pages 913–921, New York, NY,
USA, 2007. ACM.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.
Group formation in large social networks: membership, growth,
and evolution. In KDD ’06, pages 44–54, New York, NY, USA,
2006. ACM.

[4] I. Dhillon, Y. Guan, and B. Kulis. A fast kernel-based
multilevel algorithm for graph clustering. In KDD ’05, pages
629–634, New York, NY, USA, 2005. ACM.

[5] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph
clustering and minimum cut trees. Internet Mathematics,
1(4):385–408, 2004.

[6] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum flow problem. In STOC ’86, pages 136–146, New
York, NY, USA, 1986. ACM.

[7] R. E. Gomory and T. C. Hu. Multi-terminal network flows.
Journal of the Society for Industrial and Applied
Mathematics, 9(4):551–570, 1961.

[8] K. Y. Kamath and J. Caverlee. Identifying hotspots on the
real-time web. In CIKM ’10, New York, NY, USA, 2010. ACM.

[9] M. E. J. Newman. Fast algorithm for detecting community
structure in networks, September 2003.

[10] B. Saha and P. Mitra. Dynamic algorithm for graph clustering
using minimum cut tree. In ICDMW ’06, pages 667–671,
Washington, DC, USA, 2006. IEEE Computer Society.

[11] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large time-evolving
graphs. In 13th ACM SIGKDD’ 07, pages 687–696, New York,
NY, USA, 2007. ACM.

[12] S. Van Dongen. Graph clustering via a discrete uncoupling
process. SIAM J. Matrix Anal. Appl., 30(1):121–141, 2008.

